Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Feb 15;306(Pt 1):279–284. doi: 10.1042/bj3060279

The proteolytic processing site of the precursor of lysyl oxidase.

A D Cronshaw 1, L A Fothergill-Gilmore 1, D J Hulmes 1
PMCID: PMC1136513  PMID: 7864821

Abstract

The precise cleavage site of the N-terminal propeptide region of the precursor of lysyl oxidase has not yet been established, due to N-terminal blocking of the mature protein. Using a combination of peptide fragmentation, amino acid sequencing, time-of-flight m.s. and partial chemical unblocking procedures, it is shown that the mature form of lysyl oxidase begins at residue Asp-169 of the precursor protein (numbered according to the human sequence). The cleavage site is 28 residues to the C-terminal side of the site previously suggested on the basis of apparant molecular mass by SDS/PAGE, with the consequence that the two putative, N-linked glycosylation sites and the position of the Arg/Gln sequence polymorphism are now all in the precursor region.

Full text

PDF
279

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P., Daniel M., Melis K., Stout C. D. The amino acid sequence of the dihaem cytochrome c4 from the bacterium Azotobacter vinelandii. Biochem J. 1984 Aug 15;222(1):217–227. doi: 10.1042/bj2220217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arfin S. M., Bradshaw R. A. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry. 1988 Oct 18;27(21):7979–7984. doi: 10.1021/bi00421a001. [DOI] [PubMed] [Google Scholar]
  3. Cronshaw A. D., MacBeath J. R., Shackleton D. R., Collins J. F., Fothergill-Gilmore L. A., Hulmes D. J. TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein. Matrix. 1993 May;13(3):255–266. doi: 10.1016/s0934-8832(11)80009-0. [DOI] [PubMed] [Google Scholar]
  4. Csiszar K., Mariani T. J., Gosin J. S., Deak S. B., Boyd C. D. A restriction fragment length polymorphism results in a nonconservative amino acid substitution encoded within the first exon of the human lysyl oxidase gene. Genomics. 1993 May;16(2):401–406. doi: 10.1006/geno.1993.1203. [DOI] [PubMed] [Google Scholar]
  5. Drapeau G. R. Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J Biol Chem. 1980 Feb 10;255(3):839–840. [PubMed] [Google Scholar]
  6. Driessen H. P., de Jong W. W., Tesser G. I., Bloemendal H. The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem. 1985;18(4):281–325. doi: 10.3109/10409238509086784. [DOI] [PubMed] [Google Scholar]
  7. Hayes J. D., Kerr L. A., Cronshaw A. D. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. doi: 10.1042/bj2640437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry G. D., Dalgarno D. C., Marcus G., Scott M., Levine B. A., Trayer I. P. The occurrence of alpha-N-trimethylalanine as the N-terminal amino acid of some myosin light chains. FEBS Lett. 1982 Jul 19;144(1):11–15. doi: 10.1016/0014-5793(82)80558-9. [DOI] [PubMed] [Google Scholar]
  9. Hillenkamp F., Karas M. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol. 1990;193:280–295. doi: 10.1016/0076-6879(90)93420-p. [DOI] [PubMed] [Google Scholar]
  10. Hojima Y., van der Rest M., Prockop D. J. Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. Purification and characterization. J Biol Chem. 1985 Dec 15;260(29):15996–16003. [PubMed] [Google Scholar]
  11. Hulmes D. J. The collagen superfamily--diverse structures and assemblies. Essays Biochem. 1992;27:49–67. [PubMed] [Google Scholar]
  12. Hämäläinen E. R., Jones T. A., Sheer D., Taskinen K., Pihlajaniemi T., Kivirikko K. I. Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.3-31.2. Genomics. 1991 Nov;11(3):508–516. doi: 10.1016/0888-7543(91)90057-l. [DOI] [PubMed] [Google Scholar]
  13. Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
  14. Janes S. M., Palcic M. M., Scaman C. H., Smith A. J., Brown D. E., Dooley D. M., Mure M., Klinman J. P. Identification of topaquinone and its consensus sequence in copper amine oxidases. Biochemistry. 1992 Dec 8;31(48):12147–12154. doi: 10.1021/bi00163a025. [DOI] [PubMed] [Google Scholar]
  15. Kagan H. M., Trackman P. C. Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol. 1991 Sep;5(3):206–210. doi: 10.1165/ajrcmb/5.3.206. [DOI] [PubMed] [Google Scholar]
  16. Kessler E., Adar R., Goldberg B., Niece R. Partial purification and characterization of a procollagen C-proteinase from the culture medium of mouse fibroblasts. Coll Relat Res. 1986 Jul;6(3):249–266. doi: 10.1016/s0174-173x(86)80010-3. [DOI] [PubMed] [Google Scholar]
  17. Mariani T. J., Trackman P. C., Kagan H. M., Eddy R. L., Shows T. B., Boyd C. D., Deak S. B. The complete derived amino acid sequence of human lysyl oxidase and assignment of the gene to chromosome 5 (extensive sequence homology with the murine ras recision gene). Matrix. 1992 Jun;12(3):242–248. [PubMed] [Google Scholar]
  18. Oldberg A., Antonsson P., Lindblom K., Heinegård D. A collagen-binding 59-kd protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J. 1989 Sep;8(9):2601–2604. doi: 10.1002/j.1460-2075.1989.tb08399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pettigrew G. W., Smith G. M. Novel N-terminal protein blocking group identified as dimethylproline. Nature. 1977 Feb 17;265(5595):661–662. doi: 10.1038/265661a0. [DOI] [PubMed] [Google Scholar]
  20. Podell D. N., Abraham G. N. A technique for the removal of pyroglutamic acid from the amino terminus of proteins using calf liver pyroglutamate amino peptidase. Biochem Biophys Res Commun. 1978 Mar 15;81(1):176–185. doi: 10.1016/0006-291x(78)91646-7. [DOI] [PubMed] [Google Scholar]
  21. Reiser K., McCormick R. J., Rucker R. B. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 1992 Apr;6(7):2439–2449. doi: 10.1096/fasebj.6.7.1348714. [DOI] [PubMed] [Google Scholar]
  22. Romero-Chapman N., Lee J., Tinker D., Uriu-Hare J. Y., Keen C. L., Rucker R. R. Purification, properties and influence of dietary copper on accumulation and functional activity of lysyl oxidase in rat skin. Biochem J. 1991 May 1;275(Pt 3):657–662. doi: 10.1042/bj2750657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shackleton D. R., Hulmes D. J. Purification of lysyl oxidase from piglet skin by selective interaction with Sephacryl S-200. Biochem J. 1990 Mar 15;266(3):917–919. [PMC free article] [PubMed] [Google Scholar]
  24. Stock A., Clarke S., Clarke C., Stock J. N-terminal methylation of proteins: structure, function and specificity. FEBS Lett. 1987 Aug 10;220(1):8–14. doi: 10.1016/0014-5793(87)80866-9. [DOI] [PubMed] [Google Scholar]
  25. Sullivan K. A., Kagan H. M. Evidence for structural similarities in the multiple forms of aortic and cartilage lysyl oxidase and a catalytically quiescent aortic protein. J Biol Chem. 1982 Nov 25;257(22):13520–13526. [PubMed] [Google Scholar]
  26. TSUNG C. M., FRAENKEL-CONRAT H. PREFERENTIAL RELEASE OF ASPARTIC ACID BY DILUTE ACID TREATMENT OF TRYPTIC PEPTIDES. Biochemistry. 1965 May;4:793–801. doi: 10.1021/bi00881a001. [DOI] [PubMed] [Google Scholar]
  27. Trackman P. C., Bedell-Hogan D., Tang J., Kagan H. M. Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J Biol Chem. 1992 Apr 25;267(12):8666–8671. [PubMed] [Google Scholar]
  28. Trackman P. C., Pratt A. M., Wolanski A., Tang S. S., Offner G. D., Troxler R. F., Kagan H. M. Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry. 1990 May 22;29(20):4863–4870. doi: 10.1021/bi00472a016. [DOI] [PubMed] [Google Scholar]
  29. Trackman P. C., Pratt A. M., Wolanski A., Tang S. S., Offner G. D., Troxler R. F., Kagan H. M. Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry. 1991 Aug 20;30(33):8282–8282. doi: 10.1021/bi00247a025. [DOI] [PubMed] [Google Scholar]
  30. Wakasaki H., Ooshima A. Synthesis of lysyl oxidase in experimental hepatic fibrosis. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1201–1204. doi: 10.1016/0006-291x(90)90993-w. [DOI] [PubMed] [Google Scholar]
  31. Wu Y., Rich C. B., Lincecum J., Trackman P. C., Kagan H. M., Foster J. A. Characterization and developmental expression of chick aortic lysyl oxidase. J Biol Chem. 1992 Dec 5;267(34):24199–24206. [PubMed] [Google Scholar]
  32. van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES