Abstract
GTP cyclohydrolase I catalyses the first committing step in the biosynthesis of the pterin moiety of folic acid: conversion of GTP to dihydroneopterin triphosphate. GTP cyclohydrolase I of Bacillus subtilis was purified to homogeneity and shown to have a homo-octameric structure. The enzyme had an apparent Km for GTP of 4 microM and, in the absence of cations, a Vmax. of 80 nmol/min per mg of protein. K+ ions moderately increased its Vmax., whereas UTP and Ca2+ and Mg2+ ions drastically increased its Km for GTP. Dihydrofolate and other products of the folate and tetrahydrobiopterin pathways did not inhibit GTP cyclohydrolase I. In addition to their effect on the enzyme activity, Ca2+ and Mg2+ ions catalysed the chemical dephosphorylation of dihydroneopterin triphosphate to non-cyclic dihydroneopterin monophosphate, the substrate for the phosphomonoesterase reaction in folate biosynthesis. This dephosphorylation was specific and did not require the action of a phosphatase. We suggest a physiological role for Ca2+ ions and UTP in regulation of folate biosynthesis at the levels of GTP cyclohydrolase I and dephosphorylation of dihydroneopterin triphosphate.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellahsene Z., Dhondt J. L., Farriaux J. P. Guanosine triphosphate cyclohydrolase activity in rat tissues. Biochem J. 1984 Jan 1;217(1):59–65. doi: 10.1042/bj2170059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blau N., Niederwieser A. GTP-cyclohydrolases: a review. J Clin Chem Clin Biochem. 1985 Apr;23(4):169–176. [PubMed] [Google Scholar]
- Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
- Brown G. M., Williamson J. M. Biosynthesis of riboflavin, folic acid, thiamine, and pantothenic acid. Adv Enzymol Relat Areas Mol Biol. 1982;53:345–381. doi: 10.1002/9780470122983.ch9. [DOI] [PubMed] [Google Scholar]
- Burg A. W., Brown G. M. The biosynthesis of folic acid. 8. Purification and properties of the enzyme that catalyzes the production of formate from carbon atom 8 of guanosine triphosphate. J Biol Chem. 1968 May 10;243(9):2349–2358. [PubMed] [Google Scholar]
- Cha K. W., Jacobson K. B., Yim J. J. Isolation and characterization of GTP cyclohydrolase I from mouse liver. Comparison of normal and the hph-1 mutant. J Biol Chem. 1991 Jul 5;266(19):12294–12300. [PubMed] [Google Scholar]
- Cone J. E., Plowman J., Guroff G. Purification and properties of guanosine triphosphate cyclohydrolase and a stimulating protein from Comamonas sp. (ATCC 11299a). J Biol Chem. 1974 Sep 10;249(17):5551–5558. [PubMed] [Google Scholar]
- Fry I. J., Villa L., Kuehn G. D., Hageman J. H. Calmodulin-like protein from Bacillus subtilis. Biochem Biophys Res Commun. 1986 Jan 14;134(1):212–217. doi: 10.1016/0006-291x(86)90549-8. [DOI] [PubMed] [Google Scholar]
- Gollnick P., Ishino S., Kuroda M. I., Henner D. J., Yanofsky C. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8726–8730. doi: 10.1073/pnas.87.22.8726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada T., Kagamiyama H., Hatakeyama K. Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science. 1993 Jun 4;260(5113):1507–1510. doi: 10.1126/science.8502995. [DOI] [PubMed] [Google Scholar]
- Hatakeyama K., Harada T., Kagamiyama H. IMP dehydrogenase inhibitors reduce intracellular tetrahydrobiopterin levels through reduction of intracellular GTP levels. Indications of the regulation of GTP cyclohydrolase I activity by restriction of GTP availability in the cells. J Biol Chem. 1992 Oct 15;267(29):20734–20739. [PubMed] [Google Scholar]
- Hatakeyama K., Harada T., Suzuki S., Watanabe Y., Kagamiyama H. Purification and characterization of rat liver GTP cyclohydrolase I. Cooperative binding of GTP to the enzyme. J Biol Chem. 1989 Dec 25;264(36):21660–21664. [PubMed] [Google Scholar]
- Henner D. J. Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol. 1990;185:223–228. doi: 10.1016/0076-6879(90)85022-g. [DOI] [PubMed] [Google Scholar]
- Hogarth C., Ellar D. J. Calcium accumulation during sporulation of Bacillus megaterium KM. Biochem J. 1978 Oct 15;176(1):197–203. doi: 10.1042/bj1760197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzenmeier G., Schmid C., Kellermann J., Lottspeich F., Bacher A. Biosynthesis of tetrahydrofolate. Sequence of GTP cyclohydrolase I from Escherichia coli. Biol Chem Hoppe Seyler. 1991 Nov;372(11):991–997. doi: 10.1515/bchm3.1991.372.2.991. [DOI] [PubMed] [Google Scholar]
- Kwon N. S., Nathan C. F., Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989 Dec 5;264(34):20496–20501. [PubMed] [Google Scholar]
- Lee G., Pero J. Conserved nucleotide sequences in temporally controlled bacteriophage promoters. J Mol Biol. 1981 Oct 25;152(2):247–265. doi: 10.1016/0022-2836(81)90242-4. [DOI] [PubMed] [Google Scholar]
- Mailänder B., Bacher A. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain. J Biol Chem. 1976 Jun 25;251(12):3623–3628. [PubMed] [Google Scholar]
- Mayer B., John M., Böhme E. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett. 1990 Dec 17;277(1-2):215–219. doi: 10.1016/0014-5793(90)80848-d. [DOI] [PubMed] [Google Scholar]
- Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
- Norris V., Seror S. J., Casaregola S., Holland I. B. A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model. J Theor Biol. 1988 Oct 7;134(3):341–350. doi: 10.1016/s0022-5193(88)80065-1. [DOI] [PubMed] [Google Scholar]
- O'Hara M. B., Hageman J. H. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol. 1990 Aug;172(8):4161–4170. doi: 10.1128/jb.172.8.4161-4170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robberson D. L., Davidson N. Covalent coupling of ribonucleic acid to agarose. Biochemistry. 1972 Feb 15;11(4):533–537. doi: 10.1021/bi00754a008. [DOI] [PubMed] [Google Scholar]
- Schoedon G., Redweik U., Curtius H. C. Purification of GTP cyclohydrolase I from human liver and production of specific monoclonal antibodies. Eur J Biochem. 1989 Jan 2;178(3):627–634. doi: 10.1111/j.1432-1033.1989.tb14491.x. [DOI] [PubMed] [Google Scholar]
- Schoedon G., Redweik U., Frank G., Cotton R. G., Blau N. Allosteric characteristics of GTP cyclohydrolase I from Escherichia coli. Eur J Biochem. 1992 Dec 1;210(2):561–568. doi: 10.1111/j.1432-1033.1992.tb17455.x. [DOI] [PubMed] [Google Scholar]
- Schott K., Brand K., Hatakeyama K., Kagamiyama H., Maier J., Werner T., Ziegler I. Control of cell-cycle-associated tetrahydrobiopterin synthesis in rat thymocytes. Exp Cell Res. 1992 May;200(1):105–109. doi: 10.1016/s0014-4827(05)80077-1. [DOI] [PubMed] [Google Scholar]
- Shen R. S., Alam A., Zhang Y. X. Inhibition of GTP cyclohydrolase I by pterins. Biochim Biophys Acta. 1988 Apr 14;965(1):9–15. doi: 10.1016/0304-4165(88)90144-4. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Brown G. M. The biosynthesis of folic acid. XII. Purification and properties of dihydroneopterin triphosphate pyrophosphohydrolase. J Biol Chem. 1974 Apr 25;249(8):2405–2410. [PubMed] [Google Scholar]
- Tanaka K., Kaufman S., Milstien S. Tetrahydrobiopterin, the cofactor for aromatic amino acid hydroxylases, is synthesized by and regulates proliferation of erythroid cells. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5864–5867. doi: 10.1073/pnas.86.15.5864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
- Then R. L. Purification of guanosine triphosphate cyclohydrolase I and dihydrofolate reductase on a dihydrofolate-Sepharose affinity column. Anal Biochem. 1979 Nov 15;100(1):122–128. doi: 10.1016/0003-2697(79)90120-9. [DOI] [PubMed] [Google Scholar]
- Viveros O. H., Lee C. L., Abou-Donia M. M., Nixon J. C., Nichol C. A. Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydrolase in adrenal medulla and cortex. Science. 1981 Jul 17;213(4505):349–350. doi: 10.1126/science.7017928. [DOI] [PubMed] [Google Scholar]
- Weisberg E. P., O'Donnell J. M. Purification and characterization of GTP cyclohydrolase I from Drosophila melanogaster. J Biol Chem. 1986 Jan 25;261(3):1453–1458. [PubMed] [Google Scholar]
- Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Yim J. J., Pfleiderer W., Wachter H. Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J Biol Chem. 1990 Feb 25;265(6):3189–3192. [PubMed] [Google Scholar]
- Wolf W. A., Brown G. M. The biosynthesis of folic acid. X. Evidence for an Amadori rearrangement in the enzymatic formation of dihydroneopterin triphosphate from GTP. Biochim Biophys Acta. 1969 Dec 30;192(3):468–478. doi: 10.1016/0304-4165(69)90396-1. [DOI] [PubMed] [Google Scholar]
- Yim J. J., Brown G. M. Characteristics of guanosine triphosphate cyclohydrolase I purified from Escherichia coli. J Biol Chem. 1976 Aug 25;251(16):5087–5094. [PubMed] [Google Scholar]
- Young D. W. The biosynthesis of the vitamins thiamin, riboflavin, and folic acid. Nat Prod Rep. 1986 Aug;3(4):395–419. doi: 10.1039/np9860300395. [DOI] [PubMed] [Google Scholar]
- Ziegler I., Schott K., Lübbert M., Herrmann F., Schwuléra U., Bacher A. Control of tetrahydrobiopterin synthesis in T lymphocytes by synergistic action of interferon-gamma and interleukin-2. J Biol Chem. 1990 Oct 5;265(28):17026–17030. [PubMed] [Google Scholar]