Abstract
The HIS3+ gene of Saccharomyces cerevisiae was overexpressed in Escherichia coli and the recombinant imidazoleglycerol-phosphate dehydratase (IGPD) purified to homogeneity. Laser-desorption and electrospray m.s. indicated a molecular ion within 2 units of that expected (23833.3) on the basis of the protein sequence, with about half of the polypeptide lacking the N-terminal formylmethionine residue. IGPD initially purified as an apoprotein was catalytically inactive and mainly a trimer of M(r) 70,000. Addition of Mn2+ (but not Mg2+) caused this to assemble to an active (40 units/mg) enzyme (Mn-IGPD) comprising of 24 subunits (M(r) 573,000) and containing 1.35 +/- 0.1 Mn atoms/polypeptide subunit. An enzyme with an identical activity and metal content was also obtained when the fermenter growth medium of recombinant Escherichia coli was supplemented with MnCl2, and IGPD was purified through as Mn-IGPD rather than as the apoenzyme and assembled in vitro. Inhibition by EDTA indicated that the intrinsic Mn2+ was essential for activity. The retention of activity over time after dilution to very low concentrations of enzyme (< 20 nM) indicated that the metal remained in tight association with the protein. A novel continuous assay method was developed to facilitate the kinetic characterization of Mn-IGPD. At pH 7.0, the Km for IGP was 0.10 +/- 0.02 mM and the Ki value for inhibition by 1,2,4-triazole, 0.12 +/- 0.02 mM. In contrast with other reports, thiols had no influence on catalytic activity. The activity of Mn-IGPD varied with enzyme concentration in such a way as to suggest that it dissociates to a less active form at very low concentrations. Significant inhibition by the product, imidazole acetol phosphate, was inferred from the shape of the progress curve. Titration with, the potent competitive inhibitor, 2-hydroxy-3-(1,2,4-triazol-1-yl)propyl phosphonate indicated that Mn-IGPD contained 0.9 +/- 0.1 catalytic sites/protomer. The activity nearly doubled in the presence of high concentrations of Mn2+; the apparent Ks for stimulation was 20 microM. The basis of this effect was obscure, since there was no corresponding increase in the titre of active sites. Neither was there a discernable shift in the values of Km or Ki (above), although exogenous Mn2+ did reduce the optimum pH for kcat, from 7.2 to 6.8. On the basis of a single site/subunit, the maximum rate of catalytic turnover at 30 degrees C was 32 s-1.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., HORECKER B. L. The biosynthesis of histidine: imidazoleacetol phosphate transaminase. J Biol Chem. 1956 May;220(1):113–128. [PubMed] [Google Scholar]
- AMES B. N., MITCHELL H. K. The biosynthesis of histidine; imidazoleglycerol phosphate, imidazoleacetol phosphate, and histidinol phosphate. J Biol Chem. 1955 Feb;212(2):687–696. [PubMed] [Google Scholar]
- AMES B. N. The biosynthesis of histidine; D-erythro-imidazoleglycerol phosphate dehydrase. J Biol Chem. 1957 Sep;228(1):131–143. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burns E. R., Buchanan G. A., Carter M. C. Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyriclor. Plant Physiol. 1971 Jan;47(1):144–148. doi: 10.1104/pp.47.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlomagno M. S., Chiariotti L., Alifano P., Nappo A. G., Bruni C. B. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol. 1988 Oct 5;203(3):585–606. doi: 10.1016/0022-2836(88)90194-5. [DOI] [PubMed] [Google Scholar]
- Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
- Chiariotti L., Nappo A. G., Carlomagno M. S., Bruni C. B. Gene structure in the histidine operon of Escherichia coli. Identification and nucleotide sequence of the hisB gene. Mol Gen Genet. 1986 Jan;202(1):42–47. doi: 10.1007/BF00330514. [DOI] [PubMed] [Google Scholar]
- Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
- FINK G. R. GENE-ENZYME RELATIONS IN HISTIDINE BIOSYNTHESIS IN YEAST. Science. 1964 Oct 23;146(3643):525–527. doi: 10.1126/science.146.3643.525. [DOI] [PubMed] [Google Scholar]
- Fani R., Bazzicalupo M., Damiani G., Bianchi A., Schipani C., Sgaramella V., Polsinelli M. Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mol Gen Genet. 1989 Apr;216(2-3):224–229. doi: 10.1007/BF00334360. [DOI] [PubMed] [Google Scholar]
- Glaser R. D., Houston L. L. Subunit structure and photooxidation of yeast imidazoleglycerolphosphate dehydratase. Biochemistry. 1974 Dec 3;13(25):5145–5152. doi: 10.1021/bi00722a015. [DOI] [PubMed] [Google Scholar]
- Goldman G. H., Demolder J., Dewaele S., Herrera-Estrella A., Geremia R. A., Van Montagu M., Contreras R. Molecular cloning of the imidazoleglycerolphosphate dehydratase gene of Trichoderma harzianum by genetic complementation in Saccharomyces cerevisiae using a direct expression vector. Mol Gen Genet. 1992 Sep;234(3):481–488. doi: 10.1007/BF00538709. [DOI] [PubMed] [Google Scholar]
- Goodsell D. S., Olson A. J. Soluble proteins: size, shape and function. Trends Biochem Sci. 1993 Mar;18(3):65–68. doi: 10.1016/0968-0004(93)90153-e. [DOI] [PubMed] [Google Scholar]
- Henderson G. B., Snell E. E. Crystalline L-histidinol phosphate aminotransferase from Salmonella typhimurium. Purification and subunit structure. J Biol Chem. 1973 Mar 25;248(6):1906–1911. [PubMed] [Google Scholar]
- Hilton J. L., Kearney P. C., Ames B. N. Mode of action of the herbicide, 3-amino-1,2,4-triazole(amitrole): inhibition of an enzyme of histidine biosynthesis. Arch Biochem Biophys. 1965 Dec;112(3):544–547. doi: 10.1016/0003-9861(65)90093-7. [DOI] [PubMed] [Google Scholar]
- LOPER J. C. Enzyme complementation in mixed extracts of mutants from the Salmonella histidine B locus. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1440–1450. doi: 10.1073/pnas.47.9.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
- Limauro D., Avitabile A., Cappellano C., Puglia A. M., Bruni C. B. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene. 1990 May 31;90(1):31–41. doi: 10.1016/0378-1119(90)90436-u. [DOI] [PubMed] [Google Scholar]
- Mano J., Hatano M., Koizumi S., Tada S., Hashimoto M., Scheidegger A. Purification and Properties of a Monofunctional Imidazoleglycerol-Phosphate Dehydratase from Wheat. Plant Physiol. 1993 Nov;103(3):733–739. doi: 10.1104/pp.103.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin R. G., Goldberger R. F. Imidazolylacetolphosphate:L-glutamate aminotransferase. Purification and physical properties. J Biol Chem. 1967 Mar 25;242(6):1168–1174. [PubMed] [Google Scholar]
- Morrison J. F. Approaches to kinetic studies on metal-activated enzymes. Methods Enzymol. 1979;63:257–294. doi: 10.1016/0076-6879(79)63013-6. [DOI] [PubMed] [Google Scholar]
- Ramjee M. K., Coggins J. R., Thorneley R. N. A continuous, anaerobic spectrophotometric assay for chorismate synthase activity that utilizes photoreduced flavin mononucleotide. Anal Biochem. 1994 Jul;220(1):137–141. doi: 10.1006/abio.1994.1309. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoner B. E., Hsiung H. M., Belagaje R. M., Mayne N. G., Schoner R. G. Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5403–5407. doi: 10.1073/pnas.81.17.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staples M. A., Houston L. L. Proteolytic degradation of imidazoleglycerolphosphate dehydratase-histidinol phosphatase from Salmonella typhimurium and the isolation of a resistant bifunctional core enzyme. J Biol Chem. 1979 Feb 25;254(4):1395–1401. [PubMed] [Google Scholar]
- Struhl K. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 1985 Dec 9;13(23):8587–8601. doi: 10.1093/nar/13.23.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struhl K., Stinchcomb D. T., Davis R. W. A physiological study of functional expression in Escherichia coli of the cloned yeast imidazoleglycerolphosphate dehydratase gene. J Mol Biol. 1980 Jan 25;136(3):291–307. doi: 10.1016/0022-2836(80)90375-7. [DOI] [PubMed] [Google Scholar]
- Wiater A., Hulanicka D., Klopotowski T. Structural requirements for inhibition of yeast imidazoleglycerol phosphate dehydratase by triazole and anion inhibitors. Acta Biochim Pol. 1971;18(3):289–297. [PubMed] [Google Scholar]


