Abstract
Oxidative stress and adenine nucleotide catabolism occur concomitantly in several disease states, such as cardiac ischaemia-reperfusion, and may act as synergistic determinants of tissue injury. However, the mechanisms underlying this potential interaction remain ill-defined. We examined the influence of oxidative stress on the molecular, kinetic and regulatory properties of a ubiquitous AMP-catabolizing enzyme, adenylate deaminase (AMPD) (EC 3.5.4.6). To this intent, rabbit heart AMPD and an H2O2/ascorbate/iron oxidation system were employed. Enzyme exposure to the complete oxidation system acutely impaired its catalytic activity, lowered the Vmax. by 7-fold within 5 min, and rendered the enzyme unresponsive to nucleotide effectors. Irreversible AMPD inactivation resulted within about 15 min of oxidative insult and was not prevented by free-radical scavengers. Oxidative stress did not affect the molecular mass, tetrameric nature, Km, immunoreactivity or trypsinolytic pattern of the enzyme; nor did it induce carbonyl formation, Zn2+ release from the holoenzyme or net AMPD S-thiolation. This injury pattern is inconsistent with a radical-fragmentation mechanism as the basis for the oxidative AMPD inactivation observed. Rather, the sensitivity of the enzyme to both S-thiolation and thiol alkylation and the significant (3 of 9/mol of denatured enzyme) net loss of DTNB-reactive thiols on exposure to oxidant strongly implicate the conversion of essential thiol moieties into stable higher-oxidation states in the oxidative inactivation of cardiac AMPD. The altered thiol status of the enzyme on oxidative insult may prohibit a catalytically permissible conformation and, in so doing, increase AMP availability to 5'-nucleotidase in vivo.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bak M. I., Ingwall J. S. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5'-nucleotidase. J Clin Invest. 1994 Jan;93(1):40–49. doi: 10.1172/JCI116974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Finch J. W., Crouch R. K., Knapp D. R., Schey K. L. Mass spectrometric identification of modifications to human serum albumin treated with hydrogen peroxide. Arch Biochem Biophys. 1993 Sep;305(2):595–599. doi: 10.1006/abbi.1993.1466. [DOI] [PubMed] [Google Scholar]
- Fliss H., Ménard M. Hypochlorous acid-induced mobilization of zinc from metalloproteins. Arch Biochem Biophys. 1991 May 15;287(1):175–179. doi: 10.1016/0003-9861(91)90403-6. [DOI] [PubMed] [Google Scholar]
- Gilbert H. F. Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol. 1984;107:330–351. doi: 10.1016/0076-6879(84)07022-1. [DOI] [PubMed] [Google Scholar]
- Gopalakrishna R., Chen Z. H., Gundimeda U. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem. 1993 Dec 25;268(36):27180–27185. [PubMed] [Google Scholar]
- Janero D. R., Hreniuk D., Sharif H. M. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury. J Cell Physiol. 1991 Dec;149(3):347–364. doi: 10.1002/jcp.1041490302. [DOI] [PubMed] [Google Scholar]
- Janero D. R., Hreniuk D., Sharif H. M. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): nonperoxidative purine and pyrimidine nucleotide depletion. J Cell Physiol. 1993 Jun;155(3):494–504. doi: 10.1002/jcp.1041550308. [DOI] [PubMed] [Google Scholar]
- Janero D. R., Hreniuk D., Sharif H. M. Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. Am J Physiol. 1994 Jan;266(1 Pt 1):C179–C188. doi: 10.1152/ajpcell.1994.266.1.C179. [DOI] [PubMed] [Google Scholar]
- Janero D. R., Hreniuk D., Sharif H. M., Prout K. C. Hydroperoxide-induced oxidative stress alters pyridine nucleotide metabolism in neonatal heart muscle cells. Am J Physiol. 1993 Jun;264(6 Pt 1):C1401–C1410. doi: 10.1152/ajpcell.1993.264.6.C1401. [DOI] [PubMed] [Google Scholar]
- Janero D. R. Therapeutic potential of vitamin E against myocardial ischemic-reperfusion injury. Free Radic Biol Med. 1991;10(5):315–324. doi: 10.1016/0891-5849(91)90038-5. [DOI] [PubMed] [Google Scholar]
- Lesnefsky E. J., Dauber I. M., Horwitz L. D. Myocardial sulfhydryl pool alterations occur during reperfusion after brief and prolonged myocardial ischemia in vivo. Circ Res. 1991 Feb;68(2):605–613. doi: 10.1161/01.res.68.2.605. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
- Miura T., Muraoka S., Ogiso T. Inhibition of hydroxyl radical-induced protein damages by trolox. Biochem Mol Biol Int. 1993 Sep;31(1):125–133. [PubMed] [Google Scholar]
- Moss D., Nabedryk E., Breton J., Mäntele W. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrome c. Eur J Biochem. 1990 Feb 14;187(3):565–572. doi: 10.1111/j.1432-1033.1990.tb15338.x. [DOI] [PubMed] [Google Scholar]
- Nagel-Starczynowska G., Kaletha K. AMP-deaminase from human uterine smooth muscle: the effect of DTNB treatment on kinetic and regulatory properties of the enzyme. Biochim Biophys Acta. 1993 Aug 7;1164(3):261–267. doi: 10.1016/0167-4838(93)90257-r. [DOI] [PubMed] [Google Scholar]
- Ogasawara N., Goto H., Watanabe T. Isozymes of rat AMP deaminase. Biochim Biophys Acta. 1975 Oct 22;403(2):530–537. doi: 10.1016/0005-2744(75)90081-9. [DOI] [PubMed] [Google Scholar]
- Pacifici R. E., Davies K. J. Protein degradation as an index of oxidative stress. Methods Enzymol. 1990;186:485–502. doi: 10.1016/0076-6879(90)86143-j. [DOI] [PubMed] [Google Scholar]
- Raggi A., Ranieri M., Ronca G., Rossi C. A. Muscle AMP aminohydrolase. 8. The reactivity of the sulfhydryl groups of rat muscle AMP deaminase. Biochim Biophys Acta. 1972 Jun 22;271(1):102–113. [PubMed] [Google Scholar]
- Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. [DOI] [PubMed] [Google Scholar]
- Tadolini B. Oxygen toxicity. The influence of adenine-nucleotides and phosphate on Fe2+ autoxidation. Free Radic Res Commun. 1989;5(4-5):237–243. doi: 10.3109/10715768909074706. [DOI] [PubMed] [Google Scholar]
- Thakkar J. K., Janero D. R., Sharif H. M., Hreniuk D., Yarwood C. Cardiac adenylate deaminase: molecular, kinetic and regulatory properties under phosphate-free conditions. Biochem J. 1994 Jun 1;300(Pt 2):359–363. doi: 10.1042/bj3000359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thakkar J. K., Janero D. R., Yarwood C., Sharif H. M. Modulation of mammalian cardiac AMP deaminase by protein kinase C-mediated phosphorylation. Biochem J. 1993 Apr 15;291(Pt 2):523–527. doi: 10.1042/bj2910523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thakkar J. K., Janero D. R., Yarwood C., Sharif H., Hreniuk D. Isolation and characterization of AMP deaminase from mammalian (rabbit) myocardium. Biochem J. 1993 Mar 1;290(Pt 2):335–341. doi: 10.1042/bj2900335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Belle H., Wynants J., Goossens F. Formation and release of nucleosides in the ischemic myocardium. Is the guinea-pig the exception? Basic Res Cardiol. 1985 Nov-Dec;80(6):653–660. doi: 10.1007/BF01907864. [DOI] [PubMed] [Google Scholar]
