Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Mar 1;306(Pt 2):581–587. doi: 10.1042/bj3060581

Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells.

L Jornot 1, A F Junod 1
PMCID: PMC1136557  PMID: 7887914

Abstract

We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen.

Full text

PDF
581

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. D., Baker S. S., LaRosa K., Whitney C., Newburger P. E. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Arch Biochem Biophys. 1993 Jul;304(1):53–57. doi: 10.1006/abbi.1993.1320. [DOI] [PubMed] [Google Scholar]
  2. Chada S., Whitney C., Newburger P. E. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood. 1989 Nov 15;74(7):2535–2541. [PubMed] [Google Scholar]
  3. Chang M., Reddy C. C. Active transcription of the selenium-dependent glutathione peroxidase gene in selenium-deficient rats. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1431–1436. doi: 10.1016/0006-291x(91)92099-6. [DOI] [PubMed] [Google Scholar]
  4. Christensen M. J., Burgener K. W. Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver. J Nutr. 1992 Aug;122(8):1620–1626. doi: 10.1093/jn/122.8.1620. [DOI] [PubMed] [Google Scholar]
  5. Diamond A. M., Choi I. S., Crain P. F., Hashizume T., Pomerantz S. C., Cruz R., Steer C. J., Hill K. E., Burk R. F., McCloskey J. A. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA([Ser]Sec). J Biol Chem. 1993 Jul 5;268(19):14215–14223. [PubMed] [Google Scholar]
  6. Goldberg I. H., Stewart M. L., Ayuso M., Kappen L. S. On the mechanisms of inhibition of polypeptide synthesis by the antibiotics sparsomycin and pactamycin. Fed Proc. 1973 Jun;32(6):1688–1697. [PubMed] [Google Scholar]
  7. Hatfield D., Lee B. J., Hampton L., Diamond A. M. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res. 1991 Feb 25;19(4):939–943. doi: 10.1093/nar/19.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Housset B., Ody C., Rubin D. B., Elemer G., Junod A. F. Oxygen toxicity in cultured aortic endothelium: selenium-induced partial protective effect. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):343–352. doi: 10.1152/jappl.1983.55.2.343. [DOI] [PubMed] [Google Scholar]
  9. Jornot L., Junod A. F. Response of human endothelial cell antioxidant enzymes to hyperoxia. Am J Respir Cell Mol Biol. 1992 Jan;6(1):107–115. doi: 10.1165/ajrcmb/6.1.107. [DOI] [PubMed] [Google Scholar]
  10. Jornot L., Mirault M. E., Junod A. F. Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide. Am J Respir Cell Mol Biol. 1991 Sep;5(3):265–275. doi: 10.1165/ajrcmb/5.3.265. [DOI] [PubMed] [Google Scholar]
  11. Jornot L., Mirault M. E., Junod A. F. Protein synthesis in hyperoxic endothelial cells: evidence for translational defect. J Appl Physiol (1985) 1987 Aug;63(2):457–464. doi: 10.1152/jappl.1987.63.2.457. [DOI] [PubMed] [Google Scholar]
  12. Kanamoto R., Nishiyama M., Matsufuji S., Hayashi S. Translational control mechanism of ornithine decarboxylase by asparagine and putrescine in primary cultured hepatocytes. Arch Biochem Biophys. 1991 Dec;291(2):247–254. doi: 10.1016/0003-9861(91)90130-b. [DOI] [PubMed] [Google Scholar]
  13. Knight S. A., Sunde R. A. The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver. J Nutr. 1987 Apr;117(4):732–738. doi: 10.1093/jn/117.4.732. [DOI] [PubMed] [Google Scholar]
  14. Lee B. J., Worland P. J., Davis J. N., Stadtman T. C., Hatfield D. L. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989 Jun 15;264(17):9724–9727. [PubMed] [Google Scholar]
  15. Leinfelder W., Stadtman T. C., Böck A. Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations. J Biol Chem. 1989 Jun 15;264(17):9720–9723. [PubMed] [Google Scholar]
  16. Leinfelder W., Zehelein E., Mandrand-Berthelot M. A., Böck A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 1988 Feb 25;331(6158):723–725. doi: 10.1038/331723a0. [DOI] [PubMed] [Google Scholar]
  17. Li N. Q., Reddy P. S., Thyagaraju K., Reddy A. P., Hsu B. L., Scholz R. W., Tu C. P., Reddy C. C. Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J Biol Chem. 1990 Jan 5;265(1):108–113. [PubMed] [Google Scholar]
  18. Reddy A. P., Hsu B. L., Reddy P. S., Li N. Q., Thyagaraju K., Reddy C. C., Tam M. F., Tu C. P. Expression of glutathione peroxidase I gene in selenium-deficient rats. Nucleic Acids Res. 1988 Jun 24;16(12):5557–5568. doi: 10.1093/nar/16.12.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saedi M. S., Smith C. G., Frampton J., Chambers I., Harrison P. R., Sunde R. A. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Commun. 1988 Jun 16;153(2):855–861. doi: 10.1016/s0006-291x(88)81174-4. [DOI] [PubMed] [Google Scholar]
  20. Shull S., Heintz N. H., Periasamy M., Manohar M., Janssen Y. M., Marsh J. P., Mossman B. T. Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem. 1991 Dec 25;266(36):24398–24403. [PubMed] [Google Scholar]
  21. Steinkühler C., Sapora O., Carrì M. T., Nagel W., Marcocci L., Ciriolo M. R., Weser U., Rotilio G. Increase of Cu,Zn-superoxide dismutase activity during differentiation of human K562 cells involves activation by copper of a constantly expressed copper-deficient protein. J Biol Chem. 1991 Dec 25;266(36):24580–24587. [PubMed] [Google Scholar]
  22. Tappel A. L. Selenium--glutathione peroxidase: properties and synthesis. Curr Top Cell Regul. 1984;24:87–97. [PubMed] [Google Scholar]
  23. Toyoda H., Himeno S., Imura N. Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation. Biochim Biophys Acta. 1990 Jun 21;1049(2):213–215. doi: 10.1016/0167-4781(90)90042-z. [DOI] [PubMed] [Google Scholar]
  24. Toyoda H., Himeno S., Imura N. The regulation of glutathione peroxidase gene expression relevant to species difference and the effects of dietary selenium manipulation. Biochim Biophys Acta. 1989 Aug 14;1008(3):301–308. doi: 10.1016/0167-4781(89)90020-1. [DOI] [PubMed] [Google Scholar]
  25. Yoshimura S., Takekoshi S., Watanabe K., Fujii-Kuriyama Y. Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the mRNA in selenium deficient rat liver. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1024–1028. doi: 10.1016/0006-291x(88)90242-2. [DOI] [PubMed] [Google Scholar]
  26. Zähringer J., Baliga B. S., Munro H. N. Novel mechanism for translational control in regulation of ferritin synthesis by iron. Proc Natl Acad Sci U S A. 1976 Mar;73(3):857–861. doi: 10.1073/pnas.73.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES