Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Mar 15;306(Pt 3):779–785. doi: 10.1042/bj3060779

Primary structure of rat plasma membrane Ca(2+)-ATPase isoform 4 and analysis of alternative splicing patterns at splice site A.

T P Keeton 1, G E Shull 1
PMCID: PMC1136589  PMID: 7702574

Abstract

We have determined the primary structure of the rat plasma membrane Ca(2+)-ATPase isoform 4 (PMCA4), and have analysed its mRNA tissue distribution and alternative splicing patterns at splice site A. Rat PMCA4 (rPMCA4) genomic clones were isolated and used to determine the coding sequences and intron/exon organization of the 5'-end of the gene, and the remaining coding sequence was determined from PCR-amplified cDNA fragments. Pairwise comparisons reveal that the amino acid sequence of rPMCA4 has diverged substantially from those of rPMCA isoforms 1, 2 and 3 (73-76% identity) and from that of human PMCA4 (87%). Despite the high degree of sequence divergence between the two species, comparisons of intron and untranslated mRNA sequences with the corresponding human sequences confirm the identity of this rat isoform as PMCA4. Northern blot studies demonstrate that the PMCA4 mRNA is expressed in all rat tissues examined except liver, with the highest levels in uterus and stomach. A combination of PCR analysis of alternative splicing patterns and sequence analysis of the gene demonstrate that a 36 nt exon at site A is included in PMCA4 mRNAs of most tissues but is largely excluded in heart and testis. Alternative splicing of both the 36 nt exon and a previously characterized 175 nt exon at splice site C, each of which can be either included or excluded in a highly tissue-specific manner, leads to the production of four different PMCA4 variants ranging in size from 1157 to 1203 amino acids.

Full text

PDF
779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo H. P., Penniston J. T. New Ca2+ pump isoforms generated by alternative splicing of rPMCA2 mRNA. Biochem J. 1992 Apr 15;283(Pt 2):355–359. doi: 10.1042/bj2830355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borke J. L., Zaki A. E., Eisenmann D. R., Ashrafi S. H., Ashrafi S. S., Penniston J. T. Expression of plasma membrane Ca++ pump epitopes parallels the progression of enamel and dentin mineralization in rat incisor. J Histochem Cytochem. 1993 Feb;41(2):175–181. doi: 10.1177/41.2.7678268. [DOI] [PubMed] [Google Scholar]
  3. Brandt P., Neve R. L., Kammesheidt A., Rhoads R. E., Vanaman T. C. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J Biol Chem. 1992 Mar 5;267(7):4376–4385. [PubMed] [Google Scholar]
  4. Brodin P., Falchetto R., Vorherr T., Carafoli E. Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem. 1992 Mar 1;204(2):939–946. doi: 10.1111/j.1432-1033.1992.tb16715.x. [DOI] [PubMed] [Google Scholar]
  5. Burk S. E., Shull G. E. Structure of the rat plasma membrane Ca(2+)-ATPase isoform 3 gene and characterization of alternative splicing and transcription products. Skeletal muscle-specific splicing results in a plasma membrane Ca(2+)-ATPase with a novel calmodulin-binding domain. J Biol Chem. 1992 Sep 25;267(27):19683–19690. [PubMed] [Google Scholar]
  6. De Jaegere S., Wuytack F., Eggermont J. A., Verboomen H., Casteels R. Molecular cloning and sequencing of the plasma-membrane Ca2+ pump of pig smooth muscle. Biochem J. 1990 Nov 1;271(3):655–660. doi: 10.1042/bj2710655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enyedi A., Verma A. K., Heim R., Adamo H. P., Filoteo A. G., Strehler E. E., Penniston J. T. The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem. 1994 Jan 7;269(1):41–43. [PubMed] [Google Scholar]
  8. Fiedler M. A., Nemecz Z. K., Shull G. E. Cloning and sequence analysis of rat cystic fibrosis transmembrane conductance regulator. Am J Physiol. 1992 Jun;262(6 Pt 1):L779–L784. doi: 10.1152/ajplung.1992.262.6.L779. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez J. M., Dalmeida W., Abramowitz J., Suki W. N. Evidence for a fourth rat isoform of the plasma membrane calcium pump in the kidney. Biochem Biophys Res Commun. 1992 Apr 15;184(1):387–393. doi: 10.1016/0006-291x(92)91205-5. [DOI] [PubMed] [Google Scholar]
  10. Greeb J., Shull G. E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem. 1989 Nov 5;264(31):18569–18576. [PubMed] [Google Scholar]
  11. Heim R., Hug M., Iwata T., Strehler E. E., Carafoli E. Microdiversity of human-plasma-membrane calcium-pump isoform 2 generated by alternative RNA splicing in the N-terminal coding region. Eur J Biochem. 1992 Apr 1;205(1):333–340. doi: 10.1111/j.1432-1033.1992.tb16784.x. [DOI] [PubMed] [Google Scholar]
  12. Hilfiker H., Strehler-Page M. A., Stauffer T. P., Carafoli E., Strehler E. E. Structure of the gene encoding the human plasma membrane calcium pump isoform 1. J Biol Chem. 1993 Sep 15;268(26):19717–19725. [PubMed] [Google Scholar]
  13. Howard A., Legon S., Walters J. R. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol. 1993 Nov;265(5 Pt 1):G917–G925. doi: 10.1152/ajpgi.1993.265.5.G917. [DOI] [PubMed] [Google Scholar]
  14. Jouneaux C., Mallat A., Serradeil-Le Gal C., Goldsmith P., Hanoune J., Lotersztajn S. Coupling of endothelin B receptors to the calcium pump and phospholipase C via Gs and Gq in rat liver. J Biol Chem. 1994 Jan 21;269(3):1845–1851. [PubMed] [Google Scholar]
  15. Keeton T. P., Burk S. E., Shull G. E. Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca(2+)-ATPase isoforms 1, 2, 3, and 4. J Biol Chem. 1993 Feb 5;268(4):2740–2748. [PubMed] [Google Scholar]
  16. Kessler F., Falchetto R., Heim R., Meili R., Vorherr T., Strehler E. E., Carafoli E. Study of calmodulin binding to the alternatively spliced C-terminal domain of the plasma membrane Ca2+ pump. Biochemistry. 1992 Dec 1;31(47):11785–11792. doi: 10.1021/bi00162a016. [DOI] [PubMed] [Google Scholar]
  17. Khan I., Grover A. K. Expression of cyclic-nucleotide-sensitive and -insensitive isoforms of the plasma membrane Ca2+ pump in smooth muscle and other tissues. Biochem J. 1991 Jul 15;277(Pt 2):345–349. doi: 10.1042/bj2770345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuo T. H., Liu B. F., Diglio C., Tsang W. Regulation of the plasma membrane calcium pump gene expression by two signal transduction pathways. Arch Biochem Biophys. 1993 Sep;305(2):428–433. doi: 10.1006/abbi.1993.1442. [DOI] [PubMed] [Google Scholar]
  19. Kuo T. H., Wang K. K., Carlock L., Diglio C., Tsang W. Phorbol ester induces both gene expression and phosphorylation of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Feb 5;266(4):2520–2525. [PubMed] [Google Scholar]
  20. Magosci M., Yamaki M., Penniston J. T., Dousa T. P. Localization of mRNAs coding for isozymes of plasma membrane Ca(2+)-ATPase pump in rat kidney. Am J Physiol. 1992 Jul;263(1 Pt 2):F7–14. doi: 10.1152/ajprenal.1992.263.1.F7. [DOI] [PubMed] [Google Scholar]
  21. Reuben M. A., Lasater L. S., Sachs G. Characterization of a beta subunit of the gastric H+/K(+)-transporting ATPase. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6767–6771. doi: 10.1073/pnas.87.17.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shull G. E., Greeb J. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem. 1988 Jun 25;263(18):8646–8657. [PubMed] [Google Scholar]
  23. Stahl W. L., Keeton T. P., Eakin T. J. The plasma membrane Ca(2+)-ATPase mRNA isoform PMCA 4 is expressed at high levels in neurons of rat piriform cortex and neocortex. Neurosci Lett. 1994 Sep 12;178(2):267–270. doi: 10.1016/0304-3940(94)90775-7. [DOI] [PubMed] [Google Scholar]
  24. Stauffer T. P., Hilfiker H., Carafoli E., Strehler E. E. Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. J Biol Chem. 1993 Dec 5;268(34):25993–26003. [PubMed] [Google Scholar]
  25. Strehler E. E., James P., Fischer R., Heim R., Vorherr T., Filoteo A. G., Penniston J. T., Carafoli E. Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. J Biol Chem. 1990 Feb 15;265(5):2835–2842. [PubMed] [Google Scholar]
  26. Strehler E. E., Strehler-Page M. A., Vogel G., Carafoli E. mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6908–6912. doi: 10.1073/pnas.86.18.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Verma A. K., Filoteo A. G., Stanford D. R., Wieben E. D., Penniston J. T., Strehler E. E., Fischer R., Heim R., Vogel G., Mathews S. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem. 1988 Oct 5;263(28):14152–14159. [PubMed] [Google Scholar]
  28. Wajsman R., Walters J. R., Weiser M. M. Identification and isolation of the phosphorylated intermediate of the calcium pump in rat intestinal basolateral membranes. Biochem J. 1988 Dec 1;256(2):593–598. doi: 10.1042/bj2560593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zvaritch E., James P., Vorherr T., Falchetto R., Modyanov N., Carafoli E. Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis. Biochemistry. 1990 Sep 4;29(35):8070–8076. doi: 10.1021/bi00487a012. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES