Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Mar 15;306(Pt 3):837–842. doi: 10.1042/bj3060837

Localization and identification of Ca2+ATPases in highly purified human platelet plasma and intracellular membranes. Evidence that the monoclonal antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in human platelets.

S Bokkala 1, S S el-Daher 1, V V Kakkar 1, F Wuytack 1, K S Authi 1
PMCID: PMC1136596  PMID: 7702581

Abstract

The Ca2+ATPase activities of highly purified human platelet membranes prepared by high-voltage free-flow electrophoresis have been analysed by using [gamma-32P]ATP hydrolysis, recognition by antibodies and phosphoenzyme-complex formation. The Ca2+ATPase activity present in mixed membranes was found to be predominantly associated with intracellular membranes after subfractionation, with only a low level of activity associated with plasma membranes. The intracellular-membrane Ca2+ATPase activity was inhibited totally with thapsigargin (Tg), whereas the plasma-membrane Ca2+ATPase was not significantly affected, suggesting that the latter does not belong to the SERCA (sarco-endoplasmic-reticulum Ca2+ATPase) class. A monoclonal antibody, 5F10, raised to the red-cell membrane Ca2+ATPase [Cheng, Magocsi, Cooper, Penniston and Borke (1993) Cell Physiol. Biochem. 4, 31-43] recognized two bands at 135 and 150 kDa in mixed membranes and plasma membranes, and the corresponding bands in red-blood-cell membranes, confirming the Ca2+ATPase to be of the PMCA (plasma-membrane Ca2+ATPase) type. No recognition of any band was detected in intracellular membranes. Identification of the intracellular-membrane Ca2+ATPase activity was carried out with polyclonal antibodies with known specificity towards SERCA 2b (S.2b) and SERCA 3 (N89), and a monoclonal antibody, PL/IM 430, raised against platelet intracellular membranes. All of these antibodies recognized the 100 kDa Ca2+ATPase in mixed membranes and intracellular membranes, with little or no recognition of the activity in the plasma membranes. In some membrane preparations the antibody PL/IM 430 and antiserum N89 recognized similar degradation products, of 74, 70 and 40 kDa, in the intracellular-membrane fraction. The Ca2+ATPase recognized by PL/IM 430 was immunoprecipitated, and the immunoprecipitated protein was specifically recognized by the antiserum N89, but not by S.2b. Analysis of the phosphoenzyme-complex formation revealed potent phosphorylation of the 100 and 74 kDa peptides, both recognized by PL/IM 430 and N89. These studies report the presence of a PMCA in a purified plasma-membrane fraction from human platelets, and that the antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in intracellular membranes.

Full text

PDF
837

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Authi K. S., Bokkala S., Patel Y., Kakkar V. V., Munkonge F. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Biochem J. 1993 Aug 15;294(Pt 1):119–126. doi: 10.1042/bj2940119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Authi K. S. Ca2+ homeostasis and intracellular pools in human platelets. Adv Exp Med Biol. 1993;344:83–104. doi: 10.1007/978-1-4615-2994-1_7. [DOI] [PubMed] [Google Scholar]
  3. Authi K. S., Crawford N. Inositol 1,4,5-trisphosphate-induced release of sequestered Ca2+ from highly purified human platelet intracellular membranes. Biochem J. 1985 Aug 15;230(1):247–253. doi: 10.1042/bj2300247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Authi K. S. Localisation of the [32P]IP3 binding site on human platelet intracellular membranes isolated by high-voltage free-flow electrophoresis. FEBS Lett. 1992 Feb 24;298(2-3):173–176. doi: 10.1016/0014-5793(92)80049-m. [DOI] [PubMed] [Google Scholar]
  5. Bobe R., Bredoux R., Wuytack F., Quarck R., Kovàcs T., Papp B., Corvazier E., Magnier C., Enouf J. The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem. 1994 Jan 14;269(2):1417–1424. [PubMed] [Google Scholar]
  6. Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
  7. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992 Feb 5;267(4):2115–2118. [PubMed] [Google Scholar]
  8. Crawford N., Authi K. S., Hack N. Isolation and characterization of platelet membranes prepared by free flow electrophoresis. Methods Enzymol. 1992;215:5–20. doi: 10.1016/0076-6879(92)15048-h. [DOI] [PubMed] [Google Scholar]
  9. Dean W. L. Purification and reconstitution of a Ca2+ pump from human platelets. J Biol Chem. 1984 Jun 10;259(11):7343–7348. [PubMed] [Google Scholar]
  10. Enouf J., Bredoux R., Papp B., Djaffar I., Lompré A. M., Kieffer N., Gayet O., Clemetson K., Wuytack F., Rosa J. P. Human platelets express the SERCA2-b isoform of Ca(2+)-transport ATPase. Biochem J. 1992 Aug 15;286(Pt 1):135–140. doi: 10.1042/bj2860135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Enyedi A., Sarkadi B., Földes-Papp Z., Monostory S., Gárdos G. Demonstration of two distinct calcium pumps in human platelet membrane vesicles. J Biol Chem. 1986 Jul 15;261(20):9558–9563. [PubMed] [Google Scholar]
  12. Fauvel J., Chap H., Roques V., Levy-Toledano S., Douste-Blazy L. Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients. Biochim Biophys Acta. 1986 Mar 27;856(1):155–164. doi: 10.1016/0005-2736(86)90022-2. [DOI] [PubMed] [Google Scholar]
  13. Hack N., Authi K. S., Crawford N. Introduction of antibody (PL/IM 430) to a 100 kDa protein into permeabilised platelets inhibits intracellular sequestration of Ca2+. Biosci Rep. 1988 Aug;8(4):379–388. doi: 10.1007/BF01115229. [DOI] [PubMed] [Google Scholar]
  14. Hack N., Croset M., Crawford N. Studies on the bivalent-cation-activated ATPase activities of highly purified human platelet surface and intracellular membranes. Biochem J. 1986 Feb 1;233(3):661–668. doi: 10.1042/bj2330661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hack N., Wilkinson J. M., Crawford N. A monoclonal antibody (PL/IM 430) to human platelet intracellular membranes which inhibits the uptake of Ca2+ without affecting the Ca2+ +Mg2+-ATPase. Biochem J. 1988 Mar 1;250(2):355–361. doi: 10.1042/bj2500355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimura M., Aviv A., Reeves J. P. K(+)-dependent Na+/Ca2+ exchange in human platelets. J Biol Chem. 1993 Apr 5;268(10):6874–6877. [PubMed] [Google Scholar]
  17. Kovács T., Corvazier E., Papp B., Magnier C., Bredoux R., Enyedi A., Sarkadi B., Enouf J. Controlled proteolysis of Ca(2+)-ATPases in human platelet and non-muscle cell membrane vesicles. Evidence for a multi-sarco/endoplasmic reticulum Ca(2+)-ATPase system. J Biol Chem. 1994 Feb 25;269(8):6177–6184. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  20. MacLennan D. H., Toyofuku T., Lytton J. Structure-function relationships in sarcoplasmic or endoplasmic reticulum type Ca2+ pumps. Ann N Y Acad Sci. 1992 Nov 30;671:1–10. doi: 10.1111/j.1749-6632.1992.tb43779.x. [DOI] [PubMed] [Google Scholar]
  21. Menashi S., Authi K. S., Carey F., Crawford N. Characterization of the calcium-sequestering process associated with human platelet intracellular membranes isolated by free-flow electrophoresis. Biochem J. 1984 Sep 1;222(2):413–417. doi: 10.1042/bj2220413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Papp B., Enyedi A., Kovács T., Sarkadi B., Wuytack F., Thastrup O., Gárdos G., Bredoux R., Levy-Toledano S., Enouf J. Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles. J Biol Chem. 1991 Aug 5;266(22):14593–14596. [PubMed] [Google Scholar]
  23. Papp B., Enyedi A., Pászty K., Kovács T., Sarkadi B., Gárdos G., Magnier C., Wuytack F., Enouf J. Simultaneous presence of two distinct endoplasmic-reticulum-type calcium-pump isoforms in human cells. Characterization by radio-immunoblotting and inhibition by 2,5-di-(t-butyl)-1,4-benzohydroquinone. Biochem J. 1992 Nov 15;288(Pt 1):297–302. doi: 10.1042/bj2880297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steiner B., Lüscher E. F. Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase. Biochim Biophys Acta. 1985 Sep 10;818(3):299–309. doi: 10.1016/0005-2736(85)90003-3. [DOI] [PubMed] [Google Scholar]
  25. Wuytack F., Eggermont J. A., Raeymaekers L., Plessers L., Casteels R. Antibodies against the non-muscle isoform of the endoplasmic reticulum Ca2(+)-transport ATPase. Biochem J. 1989 Dec 15;264(3):765–769. doi: 10.1042/bj2640765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
  27. Wuytack F., Raeymaekers L. The Ca(2+)-transport ATPases from the plasma membrane. J Bioenerg Biomembr. 1992 Jun;24(3):285–300. doi: 10.1007/BF00768849. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES