Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 1;265(1):61–68. doi: 10.1042/bj2650061

Aortic endothelial cells synthesize a large chondroitin sulphate proteoglycan capable of binding to hyaluronate.

H Morita 1, T Takeuchi 1, S Suzuki 1, K Maeda 1, K Yamada 1, G Eguchi 1, K Kimata 1
PMCID: PMC1136614  PMID: 2302173

Abstract

Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.

Full text

PDF
61

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Faltz L. L., Reddi A. H., Hascall G. K., Martin D., Pita J. C., Hascall V. C. Characteristics of proteoglycans extracted from the Swarm rat chondrosarcoma with associative solvents. J Biol Chem. 1979 Feb 25;254(4):1375–1380. [PubMed] [Google Scholar]
  3. Folkman J., Haudenschild C. C., Zetter B. R. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5217–5221. doi: 10.1073/pnas.76.10.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gardell S., Baker J., Caterson B., Heinegård D., Rodén L. Link protein and a hyaluronic acid-binding region as components of aorta proteoglycan. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1823–1831. doi: 10.1016/s0006-291x(80)80111-2. [DOI] [PubMed] [Google Scholar]
  5. Hardingham T. E., Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans. Biochim Biophys Acta. 1972 Sep 15;279(2):401–405. doi: 10.1016/0304-4165(72)90160-2. [DOI] [PubMed] [Google Scholar]
  6. Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem. 1974 Jul 10;249(13):4232–4241. [PubMed] [Google Scholar]
  7. Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
  8. Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu Rev Biochem. 1986;55:539–567. doi: 10.1146/annurev.bi.55.070186.002543. [DOI] [PubMed] [Google Scholar]
  9. Hayes L. W., Goguen C. A., Ching S. F., Slakey L. L. Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1147–1153. doi: 10.1016/0006-291x(78)90306-6. [DOI] [PubMed] [Google Scholar]
  10. Hiss D., Scott-Burden T., Gevers W. Disulfide-bonded heparan sulfate proteoglycans associated with the surfaces of cultured bovine vascular endothelial cells. Eur J Biochem. 1987 Jan 2;162(1):89–94. doi: 10.1111/j.1432-1033.1987.tb10546.x. [DOI] [PubMed] [Google Scholar]
  11. Kato M., Koike Y., Ito Y., Suzuki S., Kimata K. Multiple forms of heparan sulfate proteoglycans in the Engelbreth-Holm-Swarm mouse tumor. The occurrence of high density forms bearing both heparan sulfate and chondroitin sulfate side chains. J Biol Chem. 1987 May 25;262(15):7180–7188. [PubMed] [Google Scholar]
  12. Kato M., Koike Y., Suzuki S., Kimata K. Basement membrane proteoglycan in various tissues: characterization using monoclonal antibodies to the Engelbreth-Holm-Swarm mouse tumor low density heparan sulfate proteoglycan. J Cell Biol. 1988 Jun;106(6):2203–2210. doi: 10.1083/jcb.106.6.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimata K., Honma Y., Okayama M., Oguri K., Hozumi M., Suzuki S. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 1983 Mar;43(3):1347–1354. [PubMed] [Google Scholar]
  14. Kimata K., Kimura J. H., Thonar E. J., Barrach H. J., Rennard S. I., Hascall V. C. Swarm rat chondrosarcoma proteoglycans. Purification of aggregates by zonal centrifugation of preformed cesium sulfate gradients. J Biol Chem. 1982 Apr 10;257(7):3819–3826. [PubMed] [Google Scholar]
  15. Kimata K., Oike Y., Ito K., Karasawa K., Suzuki S. The occurrence of low buoyant density proteoglycans in embryonic chick cartilage. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1431–1439. doi: 10.1016/0006-291x(78)91163-4. [DOI] [PubMed] [Google Scholar]
  16. Kimata K., Oike Y., Tani K., Shinomura T., Yamagata M., Uritani M., Suzuki S. A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J Biol Chem. 1986 Oct 15;261(29):13517–13525. [PubMed] [Google Scholar]
  17. Kimura J. H., Hardingham T. E., Hascall V. C. Assembly of newly synthesized proteoglycan and link protein into aggregates in cultures of chondrosarcoma chondrocytes. J Biol Chem. 1980 Aug 10;255(15):7134–7143. [PubMed] [Google Scholar]
  18. Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
  19. Kinsella M. G., Wight T. N. Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration. J Cell Biol. 1986 Mar;102(3):679–687. doi: 10.1083/jcb.102.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marcum J. A., Atha D. H., Fritze L. M., Nawroth P., Stern D., Rosenberg R. D. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem. 1986 Jun 5;261(16):7507–7517. [PubMed] [Google Scholar]
  21. Oegema T. R., Jr, Brown M., Dziewiatkowski D. D. The link protein in proteoglycan aggregates from the Swarm rat chondrosarcoma. J Biol Chem. 1977 Sep 25;252(18):6470–6477. [PubMed] [Google Scholar]
  22. Oike Y., Kimata K., Shinomura T., Nakazawa K., Suzuki S. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). Biochem J. 1980 Oct 1;191(1):193–207. doi: 10.1042/bj1910193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oohira A., Wight T. N., Bornstein P. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J Biol Chem. 1983 Feb 10;258(3):2014–2021. [PubMed] [Google Scholar]
  24. Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wight T. N., Kinsella M. G., Lark M. W., Potter-Perigo S. Vascular cell proteoglycans: evidence for metabolic modulation. Ciba Found Symp. 1986;124:241–259. doi: 10.1002/9780470513385.ch13. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES