Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 1;265(1):227–232. doi: 10.1042/bj2650227

1H-n.m.r. evaluation of the ferricytochrome c-cardiolipin interaction. Effect of superoxide radicals.

B Soussi 1, A C Bylund-Fellenius 1, T Scherstén 1, J Angström 1
PMCID: PMC1136634  PMID: 2154181

Abstract

The interaction between ferricytochrome c and cardiolipin was investigated by 1H n.m.r. at 270 MHz. From the phospholipid-induced changes of the protein spectral features it is concluded that the first 2 equivalents of cardiolipin cause a conformational change at the lower part of the solvent-exposed haem edge, involving a rearrangement of the hydrogen-bond interactions of propionate 6, thus partly accounting for the lowered redox potential of cytochrome c in the presence of cardiolipin. The increased value for the pK of the alkaline isomerization of ferricytochrome c shows that cardiolipin stabilizes the native structure of the protein, indicating that the oxidized form assumes ferrocytochrome c-like properties. Peroxidation of cardiolipin by superoxide radical ions drastically decreases the protein binding to this phospholipid. The implications of this finding, and the likelihood of the ternary cytochrome c-cardiolipin-cytochrome c oxidase complex, for the binding of cytochrome c to cytochrome c oxidase in vivo, are discussed in relation to peroxidative damage following ischaemia and reperfusion.

Full text

PDF
227

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Angström J., Falk K. E., Forsén S. Perchlorate binding to cytochrome c: a magnetic and optical study. Eur J Biochem. 1980 Sep;110(2):363–369. doi: 10.1111/j.1432-1033.1980.tb04876.x. [DOI] [PubMed] [Google Scholar]
  2. Bacon B. R., O'Neill R., Park C. H. Iron-induced peroxidative injury to isolated rat hepatic mitochondria. J Free Radic Biol Med. 1986;2(5-6):339–347. doi: 10.1016/s0748-5514(86)80034-4. [DOI] [PubMed] [Google Scholar]
  3. Bosshard H. R., Zürrer M. The conformation of cytochrome c in solution. Localization of a conformational difference between ferri- and ferrocytochrome c on the surface of the molecule. J Biol Chem. 1980 Jul 25;255(14):6694–6699. [PubMed] [Google Scholar]
  4. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  5. Brown L. R., Wüthrich K. A spin label study of lipid oxidation catalyzed by heme proteins. Biochim Biophys Acta. 1977 Jan 21;464(2):356–369. doi: 10.1016/0005-2736(77)90010-4. [DOI] [PubMed] [Google Scholar]
  6. Brown L. R., Wüthrich K. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim Biophys Acta. 1977 Aug 1;468(3):389–410. doi: 10.1016/0005-2736(77)90290-5. [DOI] [PubMed] [Google Scholar]
  7. Brzezinski P., Malmström B. G. Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4282–4286. doi: 10.1073/pnas.83.12.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brzezinski P., Malmström B. G. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer. Biochim Biophys Acta. 1987 Oct 29;894(1):29–38. doi: 10.1016/0005-2728(87)90209-x. [DOI] [PubMed] [Google Scholar]
  9. Cheneval D., Müller M., Toni R., Ruetz S., Carafoli E. Adriamycin as a probe for the transversal distribution of cardiolipin in the inner mitochondrial membrane. J Biol Chem. 1985 Oct 25;260(24):13003–13007. [PubMed] [Google Scholar]
  10. Devaux P. F., Hoatson G. L., Favre E., Fellmann P., Farren B., MacKay A. L., Bloom M. Interaction of cytochrome c with mixed dimyristoylphosphatidylcholine-dimyristoylphosphatidylserine bilayers: a deuterium nuclear magnetic resonance study. Biochemistry. 1986 Jul 1;25(13):3804–3812. doi: 10.1021/bi00361a011. [DOI] [PubMed] [Google Scholar]
  11. Fry M., Green D. E. Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1238–1246. doi: 10.1016/0006-291x(80)90622-1. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B. Superoxide, iron, vascular endothelium and reperfusion injury. Free Radic Res Commun. 1989;5(6):315–318. doi: 10.3109/10715768909073413. [DOI] [PubMed] [Google Scholar]
  13. Huang Y. Y., Kimura T. Thermodynamic parameters for the reduction reaction of membrane-bound cytochrome c in comparison with those of the membrane-free form: spectropotentiostatic determination with use of an optically transparent thin-layer electrode. Biochemistry. 1984 May 8;23(10):2231–2236. doi: 10.1021/bi00305a021. [DOI] [PubMed] [Google Scholar]
  14. McCord J. M. Free radicals and myocardial ischemia: overview and outlook. Free Radic Biol Med. 1988;4(1):9–14. doi: 10.1016/0891-5849(88)90005-6. [DOI] [PubMed] [Google Scholar]
  15. Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
  16. Okayasu T., Curtis M. T., Farber J. L. Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys. 1985 Feb 1;236(2):638–645. doi: 10.1016/0003-9861(85)90668-x. [DOI] [PubMed] [Google Scholar]
  17. Rietveld A., Sijens P., Verkleij A. J., Kruijff B. Interaction of cytochrome c and its precursor apocytochrome c with various phospholipids. EMBO J. 1983;2(6):907–913. doi: 10.1002/j.1460-2075.1983.tb01520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson N. C., Capaldi R. A. Interaction of detergents with cytochrome c oxidase. Biochemistry. 1977 Feb 8;16(3):375–381. doi: 10.1021/bi00622a006. [DOI] [PubMed] [Google Scholar]
  19. Robinson N. C., Strey F., Talbert L. Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry. 1980 Aug 5;19(16):3656–3661. doi: 10.1021/bi00557a003. [DOI] [PubMed] [Google Scholar]
  20. Santos H., Turner D. L. Proton NMR studies of horse ferricytochrome c. Completion of the assignment of the well resolved hyperfine shifted resonances. FEBS Lett. 1987 Dec 21;226(1):179–185. doi: 10.1016/0014-5793(87)80575-6. [DOI] [PubMed] [Google Scholar]
  21. Smith M. W., Collan Y., Kahng M. W., Trump B. F. Changes in mitochondrial lipids of rat kidney during ischemia. Biochim Biophys Acta. 1980 May 28;618(2):192–201. doi: 10.1016/0005-2760(80)90025-9. [DOI] [PubMed] [Google Scholar]
  22. Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
  23. Taylor C. P. The EPR of low spin heme complexes. Relation of the t2g hole model to the directional properties of the g tensor, and a new method for calculating the ligand field parameters. Biochim Biophys Acta. 1977 Mar 28;491(1):137–148. doi: 10.1016/0005-2795(77)90049-6. [DOI] [PubMed] [Google Scholar]
  24. Verkleij A. J. Lipidic intramembranous particles. Biochim Biophys Acta. 1984 Jan 27;779(1):43–63. doi: 10.1016/0304-4157(84)90003-0. [DOI] [PubMed] [Google Scholar]
  25. Vik S. B., Georgevich G., Capaldi R. A. Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1456–1460. doi: 10.1073/pnas.78.3.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vincent J. S., Kon H., Levin I. W. Low-temperature electron paramagnetic resonance study of the ferricytochrome c-cardiolipin complex. Biochemistry. 1987 Apr 21;26(8):2312–2314. doi: 10.1021/bi00382a036. [DOI] [PubMed] [Google Scholar]
  27. Weber C., Michel B., Bosshard H. R. Spectroscopic analysis of the cytochrome c oxidase-cytochrome c complex: circular dichroism and magnetic circular dichroism measurements reveal change of cytochrome c heme geometry imposed by complex formation. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6687–6691. doi: 10.1073/pnas.84.19.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Kruijff B., Cullis P. R. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. Biochim Biophys Acta. 1980 Nov 18;602(3):477–490. doi: 10.1016/0005-2736(80)90327-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES