Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 1;265(1):251–259. doi: 10.1042/bj2650251

Effects of phorbol, dexamethasone and starvation on 3-O-methyl-D-glucose transport by rat thymocytes. Modulation of transport by altered trans effects.

R J Naftalin 1, R J Rist 1
PMCID: PMC1136637  PMID: 2302167

Abstract

Uptake of 3-O-methyl-D-glucoside (3-OMG) into thymocytes was studied to ascertain if it is modulated by endofacial hexokinase activity or by intracellular glucose. (1) The Vmax for net uptake of 3-OMG into rat thymocytes is increased by phorbol 12-myristate 13-acetate (PMA; 40 nM) or starvation for 4 h, and decreased by dexamethasone (1 microM). Starvation for 4 h abolishes the PMA-dependent increase in 3-OMG uptake; this effect is prevented by incubation in 2-deoxyglucose (2-dGlc; 1 mM). (2) Dexamethasone decreases 2-dGlc uptake, increases the rate of 2-dGlc exit and decreases accumulation of free 2-dGlc, consistent with decreased endofacial hexokinase activity. (3) 3-OMG uptake is decreased by preloading the cells with 2-dGlc or glucose, whereas preloading with 3-OMG (40 mM) increases uptake of 3-OMG. (4) The inhibitory effect of preloaded 2-dGlc or glucose on 3-OMG uptake is decreased by PMA. (5) Preloading cells with 3-OMG (40 mM) increases 2-dGlc influx in control and dexamethasone-treated cells, but not into PMA-treated cells. (6) The maximal rate of self-exchange of 3-OMG is similar in control, PMA- or dexamethasone-treated cells. These results are consistent with the following view: 3-OMG uptake is retarded by exchange with cytosolic glucose, or 2-dGlc. PMA, by increasing endofacial hexokinase activity, or starvation depletes glucose from the endofacial surface of the transporter, and hence increase 3-OMG uptake. Dexamethasone, by decreasing endofacial hexokinase activity, increases endofacial binding of glucose, and hence decreases 3-OMG uptake. Cytosolic 3-OMG competes with glucose for endofacial sites, and hence the maximal rates of exchange uptake of 3-OMG are similar in control, PMA- or dexamethasone-treated cells, as the activity of thymocyte glucose transporters is apparently unaltered.

Full text

PDF
251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basketter D. A., Widdas W. F. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol. 1978 May;278:389–401. doi: 10.1113/jphysiol.1978.sp012311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carter-Su C., Okamoto K. Effect of glucocorticoids on hexose transport in rat adipocytes. Evidence for decreased transporters in the plasma membrane. J Biol Chem. 1985 Sep 15;260(20):11091–11098. [PubMed] [Google Scholar]
  3. Carter-Su C., Okamoto K. Inhibition of hexose transport in adipocytes by dexamethasone: role of protein synthesis. Am J Physiol. 1985 Feb;248(2 Pt 1):E215–E223. doi: 10.1152/ajpendo.1985.248.2.E215. [DOI] [PubMed] [Google Scholar]
  4. Christopher C. W., Kohlbacher M. S., Amos H. Transport of sugars in chick-embryo fibroblasts. Evidence for a low-affinity system and a high-affinity system for glucose transport. Biochem J. 1976 Aug 15;158(2):439–450. doi: 10.1042/bj1580439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Amore T., Cheung M. O., Duronio V., Lo T. C. Stimulation of hexose transport in L6 rat myoblasts by antibody and by glucose starvation. Biochem J. 1986 Sep 15;238(3):831–836. doi: 10.1042/bj2380831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devés R., Krupka R. M. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Biochim Biophys Acta. 1978 Jul 4;510(2):339–348. doi: 10.1016/0005-2736(78)90034-2. [DOI] [PubMed] [Google Scholar]
  7. Faik P., Morgan M., Naftalin R. J., Rist R. J. Transport and accumulation of 2-deoxy-D-glucose in wild-type and hexokinase-deficient cultured Chinese-hamster ovary (CHO) cells. Biochem J. 1989 May 15;260(1):153–155. doi: 10.1042/bj2600153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foley J. E., Huecksteadt T. P. Glucose 6-phosphate effects on deoxyglucose, glucose and methylglucose transport in rat adipocytes. Evidence for intracellular regulation of sugar transport by glucose metabolites. Biochim Biophys Acta. 1984 Nov 13;805(3):313–316. doi: 10.1016/0167-4889(84)90088-0. [DOI] [PubMed] [Google Scholar]
  9. Gay R. J., Hilf R. Density-dependent and adaptive regulation of glucose transport in primary cell cultures of the R3230AC rat mammary adenocarcinoma. J Cell Physiol. 1980 Feb;102(2):155–174. doi: 10.1002/jcp.1041020207. [DOI] [PubMed] [Google Scholar]
  10. Germinario R. J., Lakshmi T. M., Thirion J. P. Kinetic characteristics and regulation of hexose transport in a galactokinase-negative Chinese hamster fibroblast cell line: a good model for studies on sugar transport in cultured mammalian cells. J Cell Physiol. 1989 Feb;138(2):300–304. doi: 10.1002/jcp.1041380211. [DOI] [PubMed] [Google Scholar]
  11. Gibbs E. M., Allard W. J., Lienhard G. E. The glucose transporter in 3T3-L1 adipocytes is phosphorylated in response to phorbol ester but not in response to insulin. J Biol Chem. 1986 Dec 15;261(35):16597–16603. [PubMed] [Google Scholar]
  12. Greco-Perotto R., Assimacopoulos-Jeannet F., Jeanrenaud B. Insulin modifies the properties of glucose transporters in rat brown adipose tissue. Biochem J. 1987 Oct 1;247(1):63–68. doi: 10.1042/bj2470063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hallahan C., Young D. A., Munck A. Time course of early events in the action of glucocorticoids on rat thymus cells in vitro. Synthesis and turnover of a hypothetical cortisol-induced protein inhibition of glucose metabolism and of a presumed ribonucleic acid. J Biol Chem. 1973 Apr 25;248(8):2922–2927. [PubMed] [Google Scholar]
  14. Haspel H. C., Wilk E. W., Birnbaum M. J., Cushman S. W., Rosen O. M. Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J Biol Chem. 1986 May 25;261(15):6778–6789. [PubMed] [Google Scholar]
  15. Horner H. C., Munck A., Lienhard G. E. Dexamethasone causes translocation of glucose transporters from the plasma membrane to an intracellular site in human fibroblasts. J Biol Chem. 1987 Dec 25;262(36):17696–17702. [PubMed] [Google Scholar]
  16. Jarvis S. M. Trans-stimulation and trans-inhibition of uridine efflux from human erythrocytes by permeant nucleosides. Biochem J. 1986 Jan 1;233(1):295–297. doi: 10.1042/bj2330295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Joost H. G., Weber T. M., Cushman S. W., Simpson I. A. Insulin-stimulated glucose transport in rat adipose cells. Modulation of transporter intrinsic activity by isoproterenol and adenosine. J Biol Chem. 1986 Aug 5;261(22):10033–10036. [PubMed] [Google Scholar]
  18. Klip A., Rothstein A., Mack E. Stimulation of hexose uptake in rat thymic lymphocytes by phorbol ester. A role for Ca2+ and Na+/H+ exchange? Biochem Biophys Res Commun. 1984 Oct 15;124(1):14–22. doi: 10.1016/0006-291x(84)90909-4. [DOI] [PubMed] [Google Scholar]
  19. Krupka R. M., Devés R. The membrane valve: a consequence of asymmetrical inhibition of membrane carriers. I. Equilibrating transport systems. Biochim Biophys Acta. 1979 Jan 5;550(1):77–91. doi: 10.1016/0005-2736(79)90116-0. [DOI] [PubMed] [Google Scholar]
  20. Lemmon S. K., Sens D. A., Buse M. G. Insulin stimulation of glucose transport and metabolism in a human Wilms' tumor-derived myoblast-like cell line: modulation of hormone effects by glucose deprivation. J Cell Physiol. 1985 Dec;125(3):456–464. doi: 10.1002/jcp.1041250314. [DOI] [PubMed] [Google Scholar]
  21. Lieb W. R., Stein W. D. Carrier and non-carrier models for sugar transport in the human red blood cell. Biochim Biophys Acta. 1972 Apr 18;265(2):187–207. doi: 10.1016/0304-4157(72)90002-0. [DOI] [PubMed] [Google Scholar]
  22. Lo T. C., Duronio V. Activation of hexose transport by antibody. Can J Biochem Cell Biol. 1984 May;62(5):245–254. doi: 10.1139/o84-034. [DOI] [PubMed] [Google Scholar]
  23. Matthaei S., Olefsky J. M., Karnieli E. Cycloheximide decreases glucose transporters in rat adipocyte plasma membranes without affecting insulin-stimulated glucose transport. Biochem J. 1988 Apr 15;251(2):491–497. doi: 10.1042/bj2510491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Naftalin R. J., Rist R. J. Evidence that activation of 2-deoxy-D-glucose transport in rat thymocyte suspensions results from enhanced coupling between transport and hexokinase activity. Biochem J. 1989 May 15;260(1):143–152. doi: 10.1042/bj2600143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Naftalin R. J., Smith P. M. A model for accelerated uptake and accumulation of sugars arising from phosphorylation at the inner surface of the cell membrane. Biochim Biophys Acta. 1987 Feb 12;897(1):93–111. doi: 10.1016/0005-2736(87)90318-x. [DOI] [PubMed] [Google Scholar]
  26. Naftalin R. J. The role of unstirred layers in control of sugar movements across red cell membranes. Biochim Biophys Acta. 1971 Jun 1;233(3):635–643. doi: 10.1016/0005-2736(71)90163-5. [DOI] [PubMed] [Google Scholar]
  27. Nordenberg J., Stenzel K. H., Novogrodsky A. 12-0-tetradecanoylphorbol-13-acetate and concanavalin A enhance glucose uptake in thymocytes by different mechanisms. J Cell Physiol. 1983 Nov;117(2):183–188. doi: 10.1002/jcp.1041170208. [DOI] [PubMed] [Google Scholar]
  28. O'Brien T. G. Hexose transport in undifferentiated and differentiated BALB/c 3T3 preadipose cells: effects 12-O-tetradecanoylphorbol-13-acetate and insulin. J Cell Physiol. 1982 Jan;110(1):63–71. doi: 10.1002/jcp.1041100111. [DOI] [PubMed] [Google Scholar]
  29. Simpson I. A., Cushman S. W. Hormonal regulation of mammalian glucose transport. Annu Rev Biochem. 1986;55:1059–1089. doi: 10.1146/annurev.bi.55.070186.005211. [DOI] [PubMed] [Google Scholar]
  30. Wheeler T. J. Effects of three proposed inhibitors of adipocyte glucose transport on the reconstituted transporter. Biochim Biophys Acta. 1989 Mar 13;979(3):331–340. doi: 10.1016/0005-2736(89)90253-8. [DOI] [PubMed] [Google Scholar]
  31. Whitesell R. R., Abumrad N. A. Increased affinity predominates in insulin stimulation of glucose transport in the adipocyte. J Biol Chem. 1985 Mar 10;260(5):2894–2899. [PubMed] [Google Scholar]
  32. Whitesell R. R., Regen D. M. Glucose transport characteristics of quiescent thymocytes. J Biol Chem. 1978 Oct 25;253(20):7289–7294. [PubMed] [Google Scholar]
  33. Whitesell R. R., Tarpley H. L., Regen D. M. Sugar-transport kinetics of the rat thymocyte. Arch Biochem Biophys. 1977 Jun;181(2):596–602. doi: 10.1016/0003-9861(77)90266-1. [DOI] [PubMed] [Google Scholar]
  34. van Putten J. P., Krans H. M. Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes. J Biol Chem. 1985 Jul 5;260(13):7996–8001. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES