Abstract
The regulation of platelet AMP deaminase activity by ATP, GTP and phosphate was studied in human platelets in situ, and in vitro after partial purification. In intact platelets, a similar 50% decrease in cytosolic ATP was induced by either glucose starvation or treatment with H2O2. During starvation, AMP deaminase was in the inhibited state, as ATP consumption was mostly balanced by the accumulation of AMP. During H2O2 treatment, however, the enzyme was in the stimulated state, as the AMP formed was almost completely deaminated to IMP. Cytosolic GTP fell by 40-50% in both starvation and H2O2 treatment. In contrast, intracellular phosphate was 4-5-fold higher in starved than in H2O2-treated cells. These data point to phosphate as the main regulator of AMP deaminase activity in situ. This conclusion was verified by kinetic analysis of partially purified AMP deaminase. At near-physiological concentrations of MgATP, MgGTP and phosphate, the S0.5 (substrate half-saturation constant) for AMP was 0.35 mM. Half-maximal stimulation by MgATP occurred at a concn. between 2 and 3 mM. This stimulation was antagonized by the inhibitory effects of phosphate (IC50 = 2.0 mM) and MgGTP (IC50 = 0.2-0.3 mM), which acted in synergism (IC50 is the concentration causing 50% inhibition). We conclude that the difference in adenylate catabolism between starved and H2O2-treated platelets is due to the distinct phosphate concentrations. During starvation, refeeding and H2O2 treatment, the values of the adenylate charge and the phosphorylation potential were kept closely co-ordinated, which may be effected by AMP deaminase.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akkerman J. W., Driver H. A., Dangelmaier C. A., Holmsen H. Alterations in 32P-labelled intermediates during flux activation of human platelet glycolysis. Biochim Biophys Acta. 1984 Nov 28;802(2):221–228. doi: 10.1016/0304-4165(84)90165-x. [DOI] [PubMed] [Google Scholar]
- Akkerman J. W., Gorter G. Relation between energy production and adenine nucleotide metabolism in human blood platelets. Biochim Biophys Acta. 1980 Mar 7;590(1):107–116. doi: 10.1016/0005-2728(80)90150-4. [DOI] [PubMed] [Google Scholar]
- Akkerman J. W., Gorter G., Sixma J. J. Regulation of glycolytic flux in human platelets: relation between energy production by glyco(geno)lysis and energy consumption. Biochim Biophys Acta. 1978 Jun 15;541(2):241–250. doi: 10.1016/0304-4165(78)90397-5. [DOI] [PubMed] [Google Scholar]
- Akkerman J. W., Gorter G., Soons H., Holmsen H. Close correlation between platelet responses and adenylate energy charge during transient substrate depletion. Biochim Biophys Acta. 1983 Oct 4;760(1):34–41. doi: 10.1016/0304-4165(83)90121-6. [DOI] [PubMed] [Google Scholar]
- Altschuld R. A., Gamelin L. M., Kelley R. E., Lambert M. R., Apel L. E., Brierley G. P. Degradation and resynthesis of adenine nucleotides in adult rat heart myocytes. J Biol Chem. 1987 Oct 5;262(28):13527–13533. [PubMed] [Google Scholar]
- Ashby B., Holmsen H. Platelet AMP deaminase. Purification and kinetic studies. J Biol Chem. 1981 Oct 25;256(20):10519–10523. [PubMed] [Google Scholar]
- Ashby B., Holmsen H. Platelet AMP deaminase. Regulation by Mg-ATP2- and inorganic phosphate and inhibition by the transition state analog coformycin. J Biol Chem. 1983 Mar 25;258(6):3668–3672. [PubMed] [Google Scholar]
- Ashby B., Wernick E., Holmsen H. Coformycin inhibition of platelet AMP deaminase has no effect on thrombin-induced platelet secretion nor on glycolysis or glycogenolysis. J Biol Chem. 1983 Jan 10;258(1):321–325. [PubMed] [Google Scholar]
- Bontemps F., Van den Berghe G., Hers H. G. Pathways of adenine nucleotide catabolism in erythrocytes. J Clin Invest. 1986 Mar;77(3):824–830. doi: 10.1172/JCI112379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Chapman A. G., Miller A. L., Atkinson D. E. Role of the adenylate deaminase reaction in regulation of adenine nucleotide metabolism in Ehrlich ascites tumor cells. Cancer Res. 1976 Mar;36(3):1144–1150. [PubMed] [Google Scholar]
- D'Souza L., Glueck H. I. Measurement of nucleotide pools in platelets using high pressure liquid chromatography. Thromb Haemost. 1977 Dec 15;38(4):990–1001. [PubMed] [Google Scholar]
- Daniel J. L., Molish I. R., Holmsen H. Radioactive labeling of the adenine nucleotide pool of cells as a method to distinguish among intracellular compartments. Studies on human platelets. Biochim Biophys Acta. 1980 Oct 15;632(3):444–453. doi: 10.1016/0304-4165(80)90240-8. [DOI] [PubMed] [Google Scholar]
- Fukami M. H., Dangelmaier C. A., Bauer J. S., Holmsen H. Secretion, subcellular localization and metabolic status of inorganic pyrophosphate in human platelets. A major constituent of the amine-storing granules. Biochem J. 1980 Oct 15;192(1):99–105. doi: 10.1042/bj1920099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukami M. H., Holmsen H., Salganicoff L. Adenine nucleotide metabolism of blood platelets. IX. Time course of secretion and changes in energy metabolism in thrombin-treated platelets. Biochim Biophys Acta. 1976 Oct 22;444(3):633–643. doi: 10.1016/0304-4165(76)90310-x. [DOI] [PubMed] [Google Scholar]
- Harris G. L., Crawford N. Isolation of pig platelet membranes and granules. Distribution and validity of marker enzymes. Biochim Biophys Acta. 1973 Feb 16;291(3):701–719. doi: 10.1016/0005-2736(73)90475-6. [DOI] [PubMed] [Google Scholar]
- Haslam R. J., Mills D. C. The adenylate kinase of human plasma, erythrocytes and platelets in relation to the degradation of adenosine diphosphate in plasma. Biochem J. 1967 Jun;103(3):773–784. doi: 10.1042/bj1030773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmsen H., Dangelmaier C. A., Akkerman J. W. Determination of levels of glycolytic intermediates and nucleotides in platelets by pulse-labeling with [32P]orthophosphate. Anal Biochem. 1983 May;131(1):266–272. doi: 10.1016/0003-2697(83)90165-3. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Day H. J., Setkowsky C. A. Secretory mechanisms. Behaviour of adenine nucleotides during the platelet release reaction induced by adenosine diphosphate and adrenaline. Biochem J. 1972 Aug;129(1):67–82. doi: 10.1042/bj1290067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmsen H. Nucleotide metabolism of platelets. Annu Rev Physiol. 1985;47:677–690. doi: 10.1146/annurev.ph.47.030185.003333. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Robkin L. Effects of antimycin A and 2-deoxyglucose on energy metabolism in washed human platelets. Thromb Haemost. 1980 Feb 29;42(5):1460–1472. [PubMed] [Google Scholar]
- Holmsen H., Robkin L. Hydrogen peroxide lowers ATP levels in platelets without altering adenyalte energy charge and platelet function. J Biol Chem. 1977 Mar 10;252(5):1752–1757. [PubMed] [Google Scholar]
- Holmsen H., Setkowsky C. A., Day H. J. Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change of platetets. Biochem J. 1974 Nov;144(2):385–396. doi: 10.1042/bj1440385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lian C. Y., Harkness D. R. The kinetic properties of adenylate deaminase from human erythrocytes. Biochim Biophys Acta. 1974 Mar 21;341(1):27–40. doi: 10.1016/0005-2744(74)90062-x. [DOI] [PubMed] [Google Scholar]
- Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979 Sep 25;254(18):8956–8962. [PubMed] [Google Scholar]
- Mürer E. H., Davenport K., Siojo E., Day H. J. Metabolic aspects of the secretion of stored compounds from blood platelets. The effect of NaF at different pH on nucleotide metabolism and function of washed platelets. Biochem J. 1981 Jan 15;194(1):187–192. doi: 10.1042/bj1940187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogasawara N., Goto H., Yamada Y., Watanabe T., Asano T. AMP deaminase isozymes in human tissues. Biochim Biophys Acta. 1982 Feb 2;714(2):298–306. doi: 10.1016/0304-4165(82)90337-3. [DOI] [PubMed] [Google Scholar]
- Reed E. B. Coordination of adenylate energy charge and phosphorylation state during ischemia and under physiological conditions in rat liver and kidney. Life Sci. 1976 Nov 1;19(9):1307–1322. doi: 10.1016/0024-3205(76)90428-8. [DOI] [PubMed] [Google Scholar]
- Sauer L. A. Control of adenosine monophosphate catabolism in mouse ascites tumor cells. Cancer Res. 1978 Apr;38(4):1057–1063. [PubMed] [Google Scholar]
- Slater E. C. Measurement and importance of phosphorylation potentials: calculation of free energy of hydrolysis in cells. Methods Enzymol. 1979;55:235–245. doi: 10.1016/0076-6879(79)55028-9. [DOI] [PubMed] [Google Scholar]
- Solomon H. M., Gaut Z. N. Accumulation and metabolism of 2-deoxy-D-glucose-1-14C in the human platelet. Biochem Pharmacol. 1970 Sep;19(9):2631–2638. doi: 10.1016/0006-2952(70)90013-4. [DOI] [PubMed] [Google Scholar]
- Spychała J., Marszałek J., Kucharczyk E. AMP deaminases of rat small intestine. Biochim Biophys Acta. 1986 Feb 19;880(2-3):123–130. doi: 10.1016/0304-4165(86)90071-1. [DOI] [PubMed] [Google Scholar]
- Spychała J., Marszałek J. The role of GTP in the regulation of two forms of AMP deaminase from chicken kidney. Comp Biochem Physiol B. 1987;88(4):1077–1082. doi: 10.1016/0305-0491(87)90008-3. [DOI] [PubMed] [Google Scholar]
- Sussman I., Erecińska M., Wilson D. F. Regulation of cellular energy metabolism: the Crabtree effect. Biochim Biophys Acta. 1980 Jul 8;591(2):209–223. doi: 10.1016/0005-2728(80)90153-x. [DOI] [PubMed] [Google Scholar]
- Tysnes O. B., Aarbakke G. M., Verhoeven A. J., Holmsen H. Thin-layer chromatography of polyphosphoinositides from platelet extracts: interference by an unknown phospholipid. Thromb Res. 1985 Nov 1;40(3):329–338. doi: 10.1016/0049-3848(85)90268-3. [DOI] [PubMed] [Google Scholar]
- Verhoeven A. J., Mommersteeg M. E., Akkerman J. W. Balanced contribution of glycolytic and adenylate pool in supply of metabolic energy in platelets. J Biol Chem. 1985 Mar 10;260(5):2621–2624. [PubMed] [Google Scholar]
- Verhoeven A. J., Tysnes O. B., Horvli O., Cook C. A., Holmsen H. Stimulation of phosphate uptake in human platelets by thrombin and collagen. Changes in specific 32P labeling of metabolic ATP and polyphosphoinositides. J Biol Chem. 1987 May 25;262(15):7047–7052. [PubMed] [Google Scholar]
- Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J. 1982 Jan 15;202(1):117–123. doi: 10.1042/bj2020117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitlock D. M., Terjung R. L. ATP depletion in slow-twitch red muscle of rat. Am J Physiol. 1987 Sep;253(3 Pt 1):C426–C432. doi: 10.1152/ajpcell.1987.253.3.C426. [DOI] [PubMed] [Google Scholar]
- Yoshino M., Murakami K. AMP deaminase reaction as a control system of glycolysis in yeast. Role of ammonium ion in the interaction of phosphofructokinase and pyruvate kinase activity with the adenylate energy charge. J Biol Chem. 1985 Apr 25;260(8):4729–4732. [PubMed] [Google Scholar]
- van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]
