Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 15;307(Pt 2):313–326. doi: 10.1042/bj3070313

Physiological functions of endosomal proteolysis.

T Berg, T Gjøen, O Bakke
PMCID: PMC1136650  PMID: 7733863

Full text

PDF
313

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas A. K., Haber S., Rock K. L. Antigen presentation by hapten-specific B lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function of immunoglobulin receptors. J Immunol. 1985 Sep;135(3):1661–1667. [PubMed] [Google Scholar]
  2. Ajioka R. S., Kaplan J. Intracellular pools of transferrin receptors result from constitutive internalization of unoccupied receptors. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6445–6449. doi: 10.1073/pnas.83.17.6445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amigorena S., Drake J. R., Webster P., Mellman I. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature. 1994 May 12;369(6476):113–120. doi: 10.1038/369113a0. [DOI] [PubMed] [Google Scholar]
  4. Anderson M. S., Miller J. Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2282–2286. doi: 10.1073/pnas.89.6.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arborgh B., Berg T., Ericsson J. L. Quantitation of acid phosphatase and aryl sulphatase in rat hepatic parenchymal and kupffer cells. FEBS Lett. 1973 Sep 1;35(1):51–53. doi: 10.1016/0014-5793(73)80574-5. [DOI] [PubMed] [Google Scholar]
  6. Arborgh B., Glaumann H., Berg T., Ericsson J. L. Isolation of Kupffer cell lysosomes, with observations on their chemical and enzymic composition. Exp Cell Res. 1974 Oct;88(2):279–288. doi: 10.1016/0014-4827(74)90242-0. [DOI] [PubMed] [Google Scholar]
  7. Ariansen S., Afanasiev B. N., Moskaug J. O., Stenmark H., Madshus I. H., Olsnes S. Membrane translocation of diphtheria toxin A-fragment: role of carboxy-terminal region. Biochemistry. 1993 Jan 12;32(1):83–90. doi: 10.1021/bi00052a012. [DOI] [PubMed] [Google Scholar]
  8. Aronson N. N., Jr, Barrett A. J. The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem J. 1978 Jun 1;171(3):759–765. doi: 10.1042/bj1710759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Attie A. D., Weinstein D. B., Freeze H. H., Pittman R. C., Steinberg D. Unaltered catabolism of desialylated low-density lipoprotein in the pig and in cultured rat hepatocytes. Biochem J. 1979 Jun 15;180(3):647–654. doi: 10.1042/bj1800647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Authier F., Desbuquois B. Degradation of glucagon in isolated liver endosomes. ATP-dependence and partial characterization of degradation products. Biochem J. 1991 Nov 15;280(Pt 1):211–218. doi: 10.1042/bj2800211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Authier F., Janicot M., Lederer F., Desbuquois B. Fate of injected glucagon taken up by rat liver in vivo. Degradation of internalized ligand in the endosomal compartment. Biochem J. 1990 Dec 15;272(3):703–712. doi: 10.1042/bj2720703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Authier F., Rachubinski R. A., Posner B. I., Bergeron J. J. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J Biol Chem. 1994 Jan 28;269(4):3010–3016. [PubMed] [Google Scholar]
  13. Authier F., Rachubinski R. A., Posner B. I., Bergeron J. J. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J Biol Chem. 1994 Jan 28;269(4):3010–3016. [PubMed] [Google Scholar]
  14. Backer J. M., Kahn C. R., Cahill D. A., Ullrich A., White M. F. Receptor-mediated internalization of insulin requires a 12-amino acid sequence in the juxtamembrane region of the insulin receptor beta-subunit. J Biol Chem. 1990 Sep 25;265(27):16450–16454. [PubMed] [Google Scholar]
  15. Backer J. M., Kahn C. R., White M. F. The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J Biol Chem. 1990 Sep 5;265(25):14828–14835. [PubMed] [Google Scholar]
  16. Bakke O., Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990 Nov 16;63(4):707–716. doi: 10.1016/0092-8674(90)90137-4. [DOI] [PubMed] [Google Scholar]
  17. Balage M., Grizard J., Grizard G. Binding and degradation of 125I-glucagon by highly purified rat liver plasma membranes. Biochim Biophys Acta. 1986 Oct 29;884(1):101–108. doi: 10.1016/0304-4165(86)90232-1. [DOI] [PubMed] [Google Scholar]
  18. Barber L. D., Parham P. Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol. 1993;9:163–206. doi: 10.1146/annurev.cb.09.110193.001115. [DOI] [PubMed] [Google Scholar]
  19. Belcher J. D., Hamilton R. L., Brady S. E., Hornick C. A., Jaeckle S., Schneider W. J., Havel R. J. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6785–6789. doi: 10.1073/pnas.84.19.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Berg T., Blomhoff R., Naess L., Tolleshaug H., Drevon C. A. Monensin inhibits receptor-mediated endocytosis of asialoglycoproteins in rat hepatocytes. Exp Cell Res. 1983 Oct 15;148(2):319–330. doi: 10.1016/0014-4827(83)90156-8. [DOI] [PubMed] [Google Scholar]
  21. Berg T., Boman D. Distribution of lysosomal enzymes between parenchymal and Kupffer cells of rat liver. Biochim Biophys Acta. 1973 Oct 10;321(2):585–596. doi: 10.1016/0005-2744(73)90201-5. [DOI] [PubMed] [Google Scholar]
  22. Berg T., Ford T., Kindberg G., Blomhoff R., Drevon C. Intracellular degradation of asialoglycoproteins in hepatocytes starts in a subgroup of lysosomes. Exp Cell Res. 1985 Feb;156(2):570–574. doi: 10.1016/0014-4827(85)90565-8. [DOI] [PubMed] [Google Scholar]
  23. Berg T., Kindberg G. M., Ford T., Blomhoff R. Intracellular transport of asialoglycoproteins in rat hepatocytes. Evidence for two subpopulations of lysosomes. Exp Cell Res. 1985 Dec;161(2):285–296. doi: 10.1016/0014-4827(85)90086-2. [DOI] [PubMed] [Google Scholar]
  24. Berg T., Munthe-Kaas A. C. Lysosomal enzymes in cultured rat Kupffer cells. Exp Cell Res. 1977 Oct 1;109(1):119–125. doi: 10.1016/0014-4827(77)90051-9. [DOI] [PubMed] [Google Scholar]
  25. Berg T., Ose T., Ose L., Tolleshaug H. Intracellular degradation of 125I-labelled asialo-glycoproteins in rat hepatocytes: effect of leupeptin on subcellular distribution of asialo-fetuin. Int J Biochem. 1981;13(3):253–259. doi: 10.1016/0020-711x(81)90076-8. [DOI] [PubMed] [Google Scholar]
  26. Bergeron J. J., Cruz J., Khan M. N., Posner B. I. Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus. Annu Rev Physiol. 1985;47:383–403. doi: 10.1146/annurev.ph.47.030185.002123. [DOI] [PubMed] [Google Scholar]
  27. Bergeron J. J., Searle N., Khan M. N., Posner B. I. Differential and analytical subfractionation of rat liver components internalizing insulin and prolactin. Biochemistry. 1986 Apr 8;25(7):1756–1764. doi: 10.1021/bi00355a046. [DOI] [PubMed] [Google Scholar]
  28. Bergeron J. J., Sikstrom R., Hand A. R., Posner B. I. Binding and uptake of 125I-insulin into rat liver hepatocytes and endothelium. An in vivo radioautographic study. J Cell Biol. 1979 Feb;80(2):427–443. doi: 10.1083/jcb.80.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bikoff E. K., Huang L. Y., Episkopou V., van Meerwijk J., Germain R. N., Robertson E. J. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J Exp Med. 1993 Jun 1;177(6):1699–1712. doi: 10.1084/jem.177.6.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Blache P., Kervran A., Dufour M., Martinez J., Le-Nguyen D., Lotersztajn S., Pavoine C., Pecker F., Bataille D. Glucagon-(19-29), a Ca2+ pump inhibitory peptide, is processed from glucagon in the rat liver plasma membrane by a thiol endopeptidase. J Biol Chem. 1990 Dec 15;265(35):21514–21519. [PubMed] [Google Scholar]
  32. Blaner W. S., Hendriks H. F., Brouwer A., de Leeuw A. M., Knook D. L., Goodman D. S. Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res. 1985 Oct;26(10):1241–1251. [PubMed] [Google Scholar]
  33. Blomhoff R., Eskild W., Kindberg G. M., Prydz K., Berg T. Intracellular transport of endocytosed chylomicron [3H]retinyl ester in rat liver parenchymal cells. Evidence for translocation of a [3H]retinoid from endosomes to endoplasmic reticulum. J Biol Chem. 1985 Nov 5;260(25):13566–13570. [PubMed] [Google Scholar]
  34. Blomhoff R., Green M. H., Berg T., Norum K. R. Transport and storage of vitamin A. Science. 1990 Oct 19;250(4979):399–404. doi: 10.1126/science.2218545. [DOI] [PubMed] [Google Scholar]
  35. Blomhoff R., Green M. H., Green J. B., Berg T., Norum K. R. Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev. 1991 Oct;71(4):951–990. doi: 10.1152/physrev.1991.71.4.951. [DOI] [PubMed] [Google Scholar]
  36. Blomhoff R., Helgerud P., Dueland S., Berg T., Pedersen J. I., Norum K. R., Drevon C. A. Lymphatic absorption and transport of retinol and vitamin D-3 from rat intestine. Evidence for different pathways. Biochim Biophys Acta. 1984 May 16;772(2):109–116. doi: 10.1016/0005-2736(84)90033-6. [DOI] [PubMed] [Google Scholar]
  37. Blomhoff R., Helgerud P., Rasmussen M., Berg T., Norum K. R. In vivo uptake of chylomicron [3H]retinyl ester by rat liver: evidence for retinol transfer from parenchymal to nonparenchymal cells. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7326–7330. doi: 10.1073/pnas.79.23.7326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Blum J. S., Cresswell P. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3975–3979. doi: 10.1073/pnas.85.11.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Blum J. S., Diaz R., Diment S., Fiani M., Mayorga L., Rodman J. S., Stahl P. D. Proteolytic processing in endosomal vesicles. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):287–292. doi: 10.1101/sqb.1989.054.01.036. [DOI] [PubMed] [Google Scholar]
  40. Blum J. S., Diaz R., Mayorga L. S., Stahl P. D. Reconstitution of endosomal transport and proteolysis. Subcell Biochem. 1993;19:69–93. doi: 10.1007/978-1-4615-3026-8_3. [DOI] [PubMed] [Google Scholar]
  41. Blum J. S., Fiani M. L., Stahl P. D. Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem. 1991 Nov 25;266(33):22091–22095. [PubMed] [Google Scholar]
  42. Blum J. S., Fiani M. L., Stahl P. D. Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem. 1991 Nov 25;266(33):22091–22095. [PubMed] [Google Scholar]
  43. Boman D., Berg T. The influence of Cortisone on the hepatic uptake of Triton WR-1339 in adrenalectomized rats. Hoppe Seylers Z Physiol Chem. 1975 Mar;356(3):301–308. doi: 10.1515/bchm2.1975.356.1.301. [DOI] [PubMed] [Google Scholar]
  44. Bremnes B., Madsen T., Gedde-Dahl M., Bakke O. An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization. J Cell Sci. 1994 Jul;107(Pt 7):2021–2032. doi: 10.1242/jcs.107.7.2021. [DOI] [PubMed] [Google Scholar]
  45. Burge V., Mainferme F., Wattiaux R. Transient membrane association of the precursors of cathepsin C during their transfer into lysosomes. Biochem J. 1991 May 1;275(Pt 3):797–800. doi: 10.1042/bj2750797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Buus S., Werdelin O. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells. J Immunol. 1986 Jan;136(2):452–458. [PubMed] [Google Scholar]
  47. Canterbury J. M., Bricker L. A., Levey G. S., Kozlovskis P. L., Ruiz E., Zull J. E., Reiss E. Metabolism of bovine parathyroid hormone. Immunological and biological characteristics of fragments generated by liver perfusion. J Clin Invest. 1975 Jun;55(6):1245–1253. doi: 10.1172/JCI108043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Casciola-Rosen L. A., Hubbard A. L. Hydrolases in intracellular compartments of rat liver cells. Evidence for selective activation and/or delivery. J Biol Chem. 1991 Mar 5;266(7):4341–4347. [PubMed] [Google Scholar]
  49. Chicz R. M., Urban R. G., Lane W. S., Gorga J. C., Stern L. J., Vignali D. A., Strominger J. L. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature. 1992 Aug 27;358(6389):764–768. doi: 10.1038/358764a0. [DOI] [PubMed] [Google Scholar]
  50. Clot J. P., Janicot M., Fouque F., Desbuquois B., Haumont P. Y., Lederer F. Characterization of insulin degradation products generated in liver endosomes: in vivo and in vitro studies. Mol Cell Endocrinol. 1990 Sep 10;72(3):175–185. doi: 10.1016/0303-7207(90)90142-u. [DOI] [PubMed] [Google Scholar]
  51. Collins D. S., Unanue E. R., Harding C. V. Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J Immunol. 1991 Dec 15;147(12):4054–4059. [PubMed] [Google Scholar]
  52. Conner G. E. Isolation of procathepsin D from mature cathepsin D by pepstatin affinity chromatography. Autocatalytic proteolysis of the zymogen form of the enzyme. Biochem J. 1989 Oct 15;263(2):601–604. doi: 10.1042/bj2630601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Courtoy P. J. Analytical subcellular fractionation of endosomal compartments in rat hepatocytes. Subcell Biochem. 1993;19:29–68. doi: 10.1007/978-1-4615-3026-8_2. [DOI] [PubMed] [Google Scholar]
  54. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol. 1994;12:259–293. doi: 10.1146/annurev.iy.12.040194.001355. [DOI] [PubMed] [Google Scholar]
  55. D'Amour P., Segre G. V., Roth S. I., Potts J. T., Jr Analysis of parathyroid hormone and its fragments in rat tissues: chemical identification and microscopical localization. J Clin Invest. 1979 Jan;63(1):89–98. doi: 10.1172/JCI109283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Desbuquois B., Janicot M., Dupuis A. Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification. Eur J Biochem. 1990 Oct 24;193(2):501–512. doi: 10.1111/j.1432-1033.1990.tb19365.x. [DOI] [PubMed] [Google Scholar]
  57. Diment S. Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J Immunol. 1990 Jul 15;145(2):417–422. [PubMed] [Google Scholar]
  58. Diment S., Leech M. S., Stahl P. D. Cathepsin D is membrane-associated in macrophage endosomes. J Biol Chem. 1988 May 15;263(14):6901–6907. [PubMed] [Google Scholar]
  59. Diment S., Martin K. J., Stahl P. D. Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. J Biol Chem. 1989 Aug 15;264(23):13403–13406. [PubMed] [Google Scholar]
  60. Diment S., Stahl P. Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J Biol Chem. 1985 Dec 5;260(28):15311–15317. [PubMed] [Google Scholar]
  61. Doherty J. J., 2nd, Kay D. G., Lai W. H., Posner B. I., Bergeron J. J. Selective degradation of insulin within rat liver endosomes. J Cell Biol. 1990 Jan;110(1):35–42. doi: 10.1083/jcb.110.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Duckworth W. C., Hamel F. G., Peavy D. E., Liepnieks J. J., Ryan M. P., Hermodson M. A., Frank B. H. Degradation products of insulin generated by hepatocytes and by insulin protease. J Biol Chem. 1988 Feb 5;263(4):1826–1833. [PubMed] [Google Scholar]
  63. Duckworth W. C. Insulin degradation: mechanisms, products, and significance. Endocr Rev. 1988 Aug;9(3):319–345. doi: 10.1210/edrv-9-3-319. [DOI] [PubMed] [Google Scholar]
  64. Duckworth W. C., Kitabchi A. E. Insulin and glucagon degradation by the same enzyme. Diabetes. 1974 Jun;23(6):536–543. doi: 10.2337/diab.23.6.536. [DOI] [PubMed] [Google Scholar]
  65. Duckworth W. C., Runyan K. R., Wright R. K., Halban P. A., Solomon S. S. Insulin degradation by hepatocytes in primary culture. Endocrinology. 1981 Apr;108(4):1142–1147. doi: 10.1210/endo-108-4-1142. [DOI] [PubMed] [Google Scholar]
  66. Dunn K. W., Maxfield F. R. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J Cell Biol. 1992 Apr;117(2):301–310. doi: 10.1083/jcb.117.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Dunn W. A., Connolly T. P., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway. J Cell Biol. 1986 Jan;102(1):24–36. doi: 10.1083/jcb.102.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Dunn W. A., Hubbard A. L., Aronson N. N., Jr Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem. 1980 Jun 25;255(12):5971–5978. [PubMed] [Google Scholar]
  69. Dunn W. A., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J Cell Biol. 1984 Jun;98(6):2148–2159. doi: 10.1083/jcb.98.6.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  71. Felleisen R., Klinkert M. Q. In vitro translation and processing of cathepsin B of Schistosoma mansoni. EMBO J. 1990 Feb;9(2):371–377. doi: 10.1002/j.1460-2075.1990.tb08120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Fielding C. J. Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration. FASEB J. 1992 Oct;6(13):3162–3168. doi: 10.1096/fasebj.6.13.1327930. [DOI] [PubMed] [Google Scholar]
  73. Fling S. P., Arp B., Pious D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature. 1994 Apr 7;368(6471):554–558. doi: 10.1038/368554a0. [DOI] [PubMed] [Google Scholar]
  74. Fremont D. H., Matsumura M., Stura E. A., Peterson P. A., Wilson I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. doi: 10.1126/science.1323877. [DOI] [PubMed] [Google Scholar]
  75. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Gallagher J. J., Myant N. B. Does the EcoRI polymorphism in the human apolipoprotein B gene affect the binding of low density lipoprotein to the low density lipoprotein receptor? Arterioscler Thromb. 1992 Feb;12(2):256–260. doi: 10.1161/01.atv.12.2.256. [DOI] [PubMed] [Google Scholar]
  77. Germain R. N., Hendrix L. R. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature. 1991 Sep 12;353(6340):134–139. doi: 10.1038/353134a0. [DOI] [PubMed] [Google Scholar]
  78. Germain R. N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 1994 Jan 28;76(2):287–299. doi: 10.1016/0092-8674(94)90336-0. [DOI] [PubMed] [Google Scholar]
  79. Gieselmann V., Pohlmann R., Hasilik A., Von Figura K. Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J Cell Biol. 1983 Jul;97(1):1–5. doi: 10.1083/jcb.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Gordon P. B., Seglen P. O. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988 Feb 29;151(1):40–47. doi: 10.1016/0006-291x(88)90556-6. [DOI] [PubMed] [Google Scholar]
  81. Griffiths G., Gruenberg J. The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1991 Jul;1(1):5–9. doi: 10.1016/0962-8924(91)90047-d. [DOI] [PubMed] [Google Scholar]
  82. Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
  83. Griffiths G., Hollinshead R., Hemmings B. A., Nigg E. A. Ultrastructural localization of the regulatory (RII) subunit of cyclic AMP-dependent protein kinase to subcellular compartments active in endocytosis and recycling of membrane receptors. J Cell Sci. 1990 Aug;96(Pt 4):691–703. doi: 10.1242/jcs.96.4.691. [DOI] [PubMed] [Google Scholar]
  84. Griffiths G., Matteoni R., Back R., Hoflack B. Characterization of the cation-independent mannose 6-phosphate receptor-enriched prelysosomal compartment in NRK cells. J Cell Sci. 1990 Mar;95(Pt 3):441–461. doi: 10.1242/jcs.95.3.441. [DOI] [PubMed] [Google Scholar]
  85. Griffiths G., Matteoni R., Back R., Hoflack B. Characterization of the cation-independent mannose 6-phosphate receptor-enriched prelysosomal compartment in NRK cells. J Cell Sci. 1990 Mar;95(Pt 3):441–461. doi: 10.1242/jcs.95.3.441. [DOI] [PubMed] [Google Scholar]
  86. Guagliardi L. E., Koppelman B., Blum J. S., Marks M. S., Cresswell P., Brodsky F. M. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0. [DOI] [PubMed] [Google Scholar]
  87. Guo H. C., Jardetzky T. S., Garrett T. P., Lane W. S., Strominger J. L., Wiley D. C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature. 1992 Nov 26;360(6402):364–366. doi: 10.1038/360364a0. [DOI] [PubMed] [Google Scholar]
  88. Hamel F. G., Posner B. I., Bergeron J. J., Frank B. H., Duckworth W. C. Isolation of insulin degradation products from endosomes derived from intact rat liver. J Biol Chem. 1988 May 15;263(14):6703–6708. [PubMed] [Google Scholar]
  89. Hammons G. T., Smith R. M., Jarett L. Inhibition by bacitracin of rat adipocyte plasma membrane degradation of 125I-insulin is associated with an increase in plasma membrane bound insulin and a potentiation of glucose oxidation by adipocytes. J Biol Chem. 1982 Oct 10;257(19):11563–11570. [PubMed] [Google Scholar]
  90. Hansen S. H., Sandvig K., van Deurs B. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J Cell Biol. 1993 Oct;123(1):89–97. doi: 10.1083/jcb.123.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Hansen S. H., Sandvig K., van Deurs B. The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol. 1991 May;113(4):731–741. doi: 10.1083/jcb.113.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Harding C. V., Collins D. S., Kanagawa O., Unanue E. R. Liposome-encapsulated antigens engender lysosomal processing for class II MHC presentation and cytosolic processing for class I presentation. J Immunol. 1991 Nov 1;147(9):2860–2863. [PubMed] [Google Scholar]
  93. Harding C. V., Collins D. S., Slot J. W., Geuze H. J., Unanue E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell. 1991 Jan 25;64(2):393–401. doi: 10.1016/0092-8674(91)90647-h. [DOI] [PubMed] [Google Scholar]
  94. Harding C. V., Geuze H. J. Class II MHC molecules are present in macrophage lysosomes and phagolysosomes that function in the phagocytic processing of Listeria monocytogenes for presentation to T cells. J Cell Biol. 1992 Nov;119(3):531–542. doi: 10.1083/jcb.119.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Harding C. V., Geuze H. J. Class II MHC molecules are present in macrophage lysosomes and phagolysosomes that function in the phagocytic processing of Listeria monocytogenes for presentation to T cells. J Cell Biol. 1992 Nov;119(3):531–542. doi: 10.1083/jcb.119.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Harding C. V., Geuze H. J. Immunogenic peptides bind to class II MHC molecules in an early lysosomal compartment. J Immunol. 1993 Oct 15;151(8):3988–3998. [PubMed] [Google Scholar]
  97. Harding C. V., Unanue E. R. Low-temperature inhibition of antigen processing and iron uptake from transferrin: deficits in endosome functions at 18 degrees C. Eur J Immunol. 1990 Feb;20(2):323–329. doi: 10.1002/eji.1830200214. [DOI] [PubMed] [Google Scholar]
  98. Harding C. V., Unanue E. R., Slot J. W., Schwartz A. L., Geuze H. J. Functional and ultrastructural evidence for intracellular formation of major histocompatibility complex class II-peptide complexes during antigen processing. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5553–5557. doi: 10.1073/pnas.87.14.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Hasilik A. The early and late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia. 1992 Feb 15;48(2):130–151. doi: 10.1007/BF01923507. [DOI] [PubMed] [Google Scholar]
  100. Havel R. J. George Lyman Duff memorial lecture. Role of the liver in atherosclerosis. Arteriosclerosis. 1985 Nov-Dec;5(6):569–580. doi: 10.1161/01.atv.5.6.569. [DOI] [PubMed] [Google Scholar]
  101. Havel R. J., Hamilton R. L. Hepatocytic lipoprotein receptors and intracellular lipoprotein catabolism. Hepatology. 1988 Nov-Dec;8(6):1689–1704. doi: 10.1002/hep.1840080637. [DOI] [PubMed] [Google Scholar]
  102. Heuser J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol. 1989 Mar;108(3):855–864. doi: 10.1083/jcb.108.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hewlett L. J., Prescott A. R., Watts C. The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol. 1994 Mar;124(5):689–703. doi: 10.1083/jcb.124.5.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hopkins C. R., Gibson A., Shipman M., Miller K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature. 1990 Jul 26;346(6282):335–339. doi: 10.1038/346335a0. [DOI] [PubMed] [Google Scholar]
  105. Hornick C. A., Thouron C., DeLamatre J. G., Huang J. Triacylglycerol hydrolysis in isolated hepatic endosomes. J Biol Chem. 1992 Feb 15;267(5):3396–3401. [PubMed] [Google Scholar]
  106. Hruska K. A., Korkor A., Martin K., Slatopolsky E. Peripheral metabolism of intact parathyroid hormone. Role of liver and kidney and the effect of chronic renal failure. J Clin Invest. 1981 Mar;67(3):885–892. doi: 10.1172/JCI110106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Hunt D. F., Michel H., Dickinson T. A., Shabanowitz J., Cox A. L., Sakaguchi K., Appella E., Grey H. M., Sette A. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science. 1992 Jun 26;256(5065):1817–1820. doi: 10.1126/science.1319610. [DOI] [PubMed] [Google Scholar]
  108. Jadot M., Colmant C., Wattiaux-De Coninck S., Wattiaux R. Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-naphthylamide. Biochem J. 1984 May 1;219(3):965–970. doi: 10.1042/bj2190965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Jadot M., Misquith S., Dubois F., Wattiaux-De Coninck S., Wattiaux R. Intracellular pathway followed by invertase endocytosed by rat liver. Eur J Biochem. 1986 Dec 15;161(3):695–700. doi: 10.1111/j.1432-1033.1986.tb10495.x. [DOI] [PubMed] [Google Scholar]
  110. Jadot M., Wattiaux-De Coninck S., Wattiaux R. Effect on lysosomes of invertase endocytosed by rat-liver. Eur J Biochem. 1985 Sep 16;151(3):485–488. doi: 10.1111/j.1432-1033.1985.tb09127.x. [DOI] [PubMed] [Google Scholar]
  111. Jadot M., Wattiaux R. Effect of glycyl-L-phenylalanine 2-naphthylamide on invertase endocytosed by rat liver. Biochem J. 1985 Feb 1;225(3):645–648. doi: 10.1042/bj2250645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Jahraus A., Storrie B., Griffiths G., Desjardins M. Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosome compartment. J Cell Sci. 1994 Jan;107(Pt 1):145–157. doi: 10.1242/jcs.107.1.145. [DOI] [PubMed] [Google Scholar]
  113. Johnson K. F., Kornfeld S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J Cell Biol. 1992 Oct;119(2):249–257. doi: 10.1083/jcb.119.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Jäckle S., Runquist E., Brady S., Hamilton R. L., Havel R. J. Isolation and characterization of three endosomal fractions from the liver of normal rats after lipoprotein loading. J Lipid Res. 1991 Mar;32(3):485–498. [PubMed] [Google Scholar]
  115. Katunuma N., Kakegawa H., Matsunaga Y., Saibara T. Immunological significances of invariant chain from the aspect of its structural homology with the cystatin family. FEBS Lett. 1994 Aug 1;349(2):265–269. doi: 10.1016/0014-5793(94)00657-1. [DOI] [PubMed] [Google Scholar]
  116. Kay D. G., Khan M. N., Posner B. I., Bergeron J. J. In vivo uptake of insulin into hepatic Golgi fractions: application of the diaminobenzidine-shift protocol. Biochem Biophys Res Commun. 1984 Sep 28;123(3):1144–1148. doi: 10.1016/s0006-291x(84)80252-1. [DOI] [PubMed] [Google Scholar]
  117. Kelly A. P., Monaco J. J., Cho S. G., Trowsdale J. A new human HLA class II-related locus, DM. Nature. 1991 Oct 10;353(6344):571–573. doi: 10.1038/353571a0. [DOI] [PubMed] [Google Scholar]
  118. Khan M. N., Baquiran G., Brule C., Burgess J., Foster B., Bergeron J. J., Posner B. I. Internalization and activation of the rat liver insulin receptor kinase in vivo. J Biol Chem. 1989 Aug 5;264(22):12931–12940. [PubMed] [Google Scholar]
  119. Khan M. N., Lai W. H., Burgess J. W., Posner B. I., Bergeron J. J. Potential role of endosomes in transmembrane signaling. Subcell Biochem. 1993;19:223–254. doi: 10.1007/978-1-4615-3026-8_8. [DOI] [PubMed] [Google Scholar]
  120. Khan M. N., Posner B. I., Khan R. J., Bergeron J. J. Internalization of insulin into rat liver Golgi elements. Evidence for vesicle heterogeneity and the path of intracellular processing. J Biol Chem. 1982 May 25;257(10):5969–5976. [PubMed] [Google Scholar]
  121. Khan M. N., Savoie S., Khan R. J., Bergeron J. J., Posner B. I. Insulin and insulin receptor uptake into rat liver. Chloroquine action on receptor recycling. Diabetes. 1985 Oct;34(10):1025–1030. doi: 10.2337/diab.34.10.1025. [DOI] [PubMed] [Google Scholar]
  122. Khan R. J., Khan M. N., Bergeron J. J., Posner B. I. Prolactin uptake into liver endocytic components. Reduced sensitivity to chloroquine. Biochim Biophys Acta. 1985 Jan 28;838(1):77–83. doi: 10.1016/0304-4165(85)90252-1. [DOI] [PubMed] [Google Scholar]
  123. Kielian M. C., Marsh M., Helenius A. Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest virus. EMBO J. 1986 Dec 1;5(12):3103–3109. doi: 10.1002/j.1460-2075.1986.tb04616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Kindberg G. M., Gudmundsen O., Berg T. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells. J Biol Chem. 1990 Jun 5;265(16):8999–9005. [PubMed] [Google Scholar]
  125. Kindberg G. M., Refsnes M., Christoffersen T., Norum K. R., Berg T. The relationship between autophagy and the intracellular degradation of asialoglycoproteins in cultured rat hepatocytes. J Biol Chem. 1987 May 25;262(15):7066–7071. [PubMed] [Google Scholar]
  126. Kindberg G. M., Stang E., Andersen K. J., Roos N., Berg T. Intracellular transport of endocytosed proteins in rat liver endothelial cells. Biochem J. 1990 Aug 15;270(1):205–211. doi: 10.1042/bj2700205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Kindberg G. M., Tolleshaug H., Gjøen T., Berg T. Lysosomal and endosomal heterogeneity in the liver: a comparison of the intracellular pathways of endocytosis in rat liver cells. Hepatology. 1991 Feb;13(2):254–259. [PubMed] [Google Scholar]
  128. Kirschner R. J., Goldberg A. L. A high molecular weight metalloendoprotease from the cytosol of mammalian cells. J Biol Chem. 1983 Jan 25;258(2):967–976. [PubMed] [Google Scholar]
  129. Knapp P. E., Swanson J. A. Plasticity of the tubular lysosomal compartment in macrophages. J Cell Sci. 1990 Mar;95(Pt 3):433–439. doi: 10.1242/jcs.95.3.433. [DOI] [PubMed] [Google Scholar]
  130. Knook D. L., Sleyster E. C. Isolated parenchymal, Kupffer and endothelial rat liver cells characterized by their lysosomal enzyme content. Biochem Biophys Res Commun. 1980 Sep 16;96(1):250–257. doi: 10.1016/0006-291x(80)91207-3. [DOI] [PubMed] [Google Scholar]
  131. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  132. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  133. Kornfeld S. Trafficking of lysosomal enzymes. FASEB J. 1987 Dec;1(6):462–468. doi: 10.1096/fasebj.1.6.3315809. [DOI] [PubMed] [Google Scholar]
  134. Kuo W. L., Gehm B. D., Rosner M. R. Regulation of insulin degradation: expression of an evolutionarily conserved insulin-degrading enzyme increases degradation via an intracellular pathway. Mol Endocrinol. 1991 Oct;5(10):1467–1476. doi: 10.1210/mend-5-10-1467. [DOI] [PubMed] [Google Scholar]
  135. Kvist S., Wiman K., Claesson L., Peterson P. A., Dobberstein B. Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens. Cell. 1982 May;29(1):61–69. doi: 10.1016/0092-8674(82)90090-3. [DOI] [PubMed] [Google Scholar]
  136. Kämpgen E., Koch N., Koch F., Stöger P., Heufler C., Schuler G., Romani N. Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3014–3018. doi: 10.1073/pnas.88.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Lai W. H., Cameron P. H., Doherty J. J., 2nd, Posner B. I., Bergeron J. J. Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J Cell Biol. 1989 Dec;109(6 Pt 1):2751–2760. doi: 10.1083/jcb.109.6.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  139. Layet C., Germain R. N. Invariant chain promotes egress of poorly expressed, haplotype-mismatched class II major histocompatibility complex A alpha A beta dimers from the endoplasmic reticulum/cis-Golgi compartment. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2346–2350. doi: 10.1073/pnas.88.6.2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Lemansky P., Hasilik A., von Figura K., Helmy S., Fishman J., Fine R. E., Kedersha N. L., Rome L. H. Lysosomal enzyme precursors in coated vesicles derived from the exocytic and endocytic pathways. J Cell Biol. 1987 Jun;104(6):1743–1748. doi: 10.1083/jcb.104.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Lin S. X., Collins C. A. Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J Cell Sci. 1992 Jan;101(Pt 1):125–137. doi: 10.1242/jcs.101.1.125. [DOI] [PubMed] [Google Scholar]
  142. Lindert K. A., Caldwell-Kenkel J. C., Nukina S., Lemasters J. J., Thurman R. G. Activation of Kupffer cells on reperfusion following hypoxia: particle phagocytosis in a low-flow, reflow model. Am J Physiol. 1992 Feb;262(2 Pt 1):G345–G350. doi: 10.1152/ajpgi.1992.262.2.G345. [DOI] [PubMed] [Google Scholar]
  143. Ludwig T., Griffiths G., Hoflack B. Distribution of newly synthesized lysosomal enzymes in the endocytic pathway of normal rat kidney cells. J Cell Biol. 1991 Dec;115(6):1561–1572. doi: 10.1083/jcb.115.6.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Mach L., Schwihla H., Stüwe K., Rowan A. D., Mort J. S., Glössl J. Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself. Biochem J. 1993 Jul 15;293(Pt 2):437–442. doi: 10.1042/bj2930437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Madnick H. M., Winkler J. R., Segal H. L. Uptake of yeast invertase by rat liver cells in vivo and in vitro. Arch Biochem Biophys. 1978 Nov;191(1):385–392. doi: 10.1016/0003-9861(78)90102-9. [DOI] [PubMed] [Google Scholar]
  146. Magun B. E., Planck S. R., Wagner H. N., Jr Intracellular processing of 125I-epidermal growth factor in rat embryo fibroblasts. J Cell Biochem. 1982;20(3):259–276. doi: 10.1002/jcb.240200306. [DOI] [PubMed] [Google Scholar]
  147. Mainferme F., Wattiaux R., von Figura K. Synthesis, transport and processing of cathepsin C in Morris hepatoma 7777 cells and rat hepatocytes. Eur J Biochem. 1985 Nov 15;153(1):211–216. doi: 10.1111/j.1432-1033.1985.tb09288.x. [DOI] [PubMed] [Google Scholar]
  148. Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983 Mar;32(3):931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  149. Martin K. J., Freitag J. J., Conrades M. B., Hruska K. A., Klahr S., Slatopolsky E. Selective uptake of the synthetic amino terminal fragment of bovine parathyroid hormone by isolated perfused bone. J Clin Invest. 1978 Aug;62(2):256–261. doi: 10.1172/JCI109124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Martin K. J., Hruska K. A., Freitag J. J., Klahr S., Slatopolsky E. The peripheral metabolism of parathyroid hormone. N Engl J Med. 1979 Nov 15;301(20):1092–1098. doi: 10.1056/NEJM197911153012005. [DOI] [PubMed] [Google Scholar]
  151. Matrisian L. M., Planck S. R., Magun B. E. Intracellular processing of epidermal growth factor. I. Acidification of 125I-epidermal growth factor in intracellular organelles. J Biol Chem. 1984 Mar 10;259(5):3047–3052. [PubMed] [Google Scholar]
  152. Matrisian L. M., Rodland K. D., Magun B. E. Disruption of intracellular processing of epidermal growth factor by methylamine inhibits epidermal growth factor-induced DNA synthesis but not early morphological or transcriptional events. J Biol Chem. 1987 May 15;262(14):6908–6913. [PubMed] [Google Scholar]
  153. Mayorga L. S., Bertini F., Stahl P. D. Fusion of newly formed phagosomes with endosomes in intact cells and in a cell-free system. J Biol Chem. 1991 Apr 5;266(10):6511–6517. [PubMed] [Google Scholar]
  154. Mayorga L. S., Diaz R., Stahl P. D. Reconstitution of endosomal proteolysis in a cell-free system. Transfer of immune complexes internalized via Fc receptors to an endosomal proteolytic compartment. J Biol Chem. 1989 Apr 5;264(10):5392–5399. [PubMed] [Google Scholar]
  155. McAbee D. D., Clarke B. L., Oka J. A., Weigel P. H. The surface activity of the same subpopulation of galactosyl receptors on isolated rat hepatocytes is modulated by colchicine, monensin, ATP depletion, and chloroquine. J Biol Chem. 1990 Jan 15;265(2):629–635. [PubMed] [Google Scholar]
  156. McAbee D. D., Lear M. C., Weigel P. H. Total cellular activity and distribution of a subpopulation of galactosyl receptors in isolated rat hepatocytes are differentially affected by microtubule drugs, monensin, low temperature, and chloroquine. J Cell Biochem. 1991 Jan;45(1):59–68. doi: 10.1002/jcb.240450113. [DOI] [PubMed] [Google Scholar]
  157. McCoy K. L., Gainey D., Inman J. K., Stutzman R. Antigen presentation by B lymphoma cells. Requirements for processing of exogenous antigen internalized through transferrin receptors. J Immunol. 1993 Nov 1;151(9):4583–4594. [PubMed] [Google Scholar]
  158. McCoy K. L., Noone M., Inman J. K., Stutzman R. Exogenous antigens internalized through transferrin receptors activate CD4+ T cells. J Immunol. 1993 Mar 1;150(5):1691–1704. [PubMed] [Google Scholar]
  159. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  160. Merion M., Sly W. S. The role of intermediate vesicles in the adsorptive endocytosis and transport of ligand to lysosomes by human fibroblasts. J Cell Biol. 1983 Mar;96(3):644–650. doi: 10.1083/jcb.96.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Misbin R. I., Almira E. C. Degradation of insulin and insulin-like growth factors by enzyme purified from human erythrocytes. Comparison of degradation products observed with A14- and B26-[125I]monoiodoinsulin. Diabetes. 1989 Feb;38(2):152–158. doi: 10.2337/diab.38.2.152. [DOI] [PubMed] [Google Scholar]
  162. Misquith S., Wattiaux-De Coninck S., Wattiaux R. Uptake and intracellular transport in rat liver of formaldehyde-treated bovine serum albumin labelled with 125I-tyramine-cellobiose. Eur J Biochem. 1988 Jul 1;174(4):691–697. doi: 10.1111/j.1432-1033.1988.tb14153.x. [DOI] [PubMed] [Google Scholar]
  163. Moriyama A., Kageyama T., Takahashi K. Identification of monkey lung procathepsin D-II as a pepsinogen-C-like acid protease zymogen. Eur J Biochem. 1983 May 16;132(3):687–692. doi: 10.1111/j.1432-1033.1983.tb07420.x. [DOI] [PubMed] [Google Scholar]
  164. Morris P., Shaman J., Attaya M., Amaya M., Goodman S., Bergman C., Monaco J. J., Mellins E. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature. 1994 Apr 7;368(6471):551–554. doi: 10.1038/368551a0. [DOI] [PubMed] [Google Scholar]
  165. Mouritsen S., Meldal M., Werdelin O., Hansen A. S., Buus S. MHC molecules protect T cell epitopes against proteolytic destruction. J Immunol. 1992 Sep 15;149(6):1987–1993. [PubMed] [Google Scholar]
  166. Mueller S. C., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J Cell Biol. 1986 Mar;102(3):932–942. doi: 10.1083/jcb.102.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Mullock B. M., Branch W. J., van Schaik M., Gilbert L. K., Luzio J. P. Reconstitution of an endosome-lysosome interaction in a cell-free system. J Cell Biol. 1989 Jun;108(6):2093–2099. doi: 10.1083/jcb.108.6.2093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Muno D., Ishidoh K., Ueno T., Kominami E. Processing and transport of the precursor of cathepsin C during its transfer into lysosomes. Arch Biochem Biophys. 1993 Oct;306(1):103–110. doi: 10.1006/abbi.1993.1486. [DOI] [PubMed] [Google Scholar]
  169. Munthe-Kaas A. C., Berg T., Seglen P. O., Seljelid R. Mass isolation and culture of rat kupffer cells. J Exp Med. 1975 Jan 1;141(1):1–10. doi: 10.1084/jem.141.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Munthe-Kaas A. C., Berg T., Seljelid R. Distribution of lysosomal enzymes in different types of rat liver cells. Exp Cell Res. 1976 Apr;99(1):146–154. doi: 10.1016/0014-4827(76)90689-3. [DOI] [PubMed] [Google Scholar]
  171. Murphy R. F. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1991 Oct;1(4):77–82. doi: 10.1016/0962-8924(91)90022-2. [DOI] [PubMed] [Google Scholar]
  172. Murphy R. F., Powers S., Cantor C. R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol. 1984 May;98(5):1757–1762. doi: 10.1083/jcb.98.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Müller D., Baumeister H., Buck F., Richter D. Atrial natriuretic peptide (ANP) is a high-affinity substrate for rat insulin-degrading enzyme. Eur J Biochem. 1991 Dec 5;202(2):285–292. doi: 10.1111/j.1432-1033.1991.tb16374.x. [DOI] [PubMed] [Google Scholar]
  174. Müller D., Schulze C., Baumeister H., Buck F., Richter D. Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry. Biochemistry. 1992 Nov 17;31(45):11138–11143. doi: 10.1021/bi00160a026. [DOI] [PubMed] [Google Scholar]
  175. Neefjes J. J., Ploegh H. L. Inhibition of endosomal proteolytic activity by leupeptin blocks surface expression of MHC class II molecules and their conversion to SDS resistance alpha beta heterodimers in endosomes. EMBO J. 1992 Feb;11(2):411–416. doi: 10.1002/j.1460-2075.1992.tb05069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Neefjes J. J., Stollorz V., Peters P. J., Geuze H. J., Ploegh H. L. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell. 1990 Apr 6;61(1):171–183. doi: 10.1016/0092-8674(90)90224-3. [DOI] [PubMed] [Google Scholar]
  177. Nelson C. A., Roof R. W., McCourt D. W., Unanue E. R. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7380–7383. doi: 10.1073/pnas.89.16.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Neufeld E. F. Lysosomal storage diseases. Annu Rev Biochem. 1991;60:257–280. doi: 10.1146/annurev.bi.60.070191.001353. [DOI] [PubMed] [Google Scholar]
  179. Nguyen Q. V., Humphreys R. E. Time course of intracellular associations, processing, and cleavages of Ii forms and class II major histocompatibility complex molecules. J Biol Chem. 1989 Jan 25;264(3):1631–1637. [PubMed] [Google Scholar]
  180. Nishimura Y., Kato K. Identification of latent procathepsin H in microsomal lumen: characterization of proteolytic processing and enzyme activation. Arch Biochem Biophys. 1988 Feb 1;260(2):712–718. doi: 10.1016/0003-9861(88)90500-0. [DOI] [PubMed] [Google Scholar]
  181. Nishimura Y., Kawabata T., Furuno K., Kato K. Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch Biochem Biophys. 1989 Jun;271(2):400–406. doi: 10.1016/0003-9861(89)90289-0. [DOI] [PubMed] [Google Scholar]
  182. Nishimura Y., Kawabata T., Kato K. Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys. 1988 Feb 15;261(1):64–71. doi: 10.1016/0003-9861(88)90104-x. [DOI] [PubMed] [Google Scholar]
  183. Odorizzi C. G., Trowbridge I. S., Xue L., Hopkins C. R., Davis C. D., Collawn J. F. Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment. J Cell Biol. 1994 Jul;126(2):317–330. doi: 10.1083/jcb.126.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Oka J. A., Christensen M. D., Weigel P. H. Hyperosmolarity inhibits galactosyl receptor-mediated but not fluid phase endocytosis in isolated rat hepatocytes. J Biol Chem. 1989 Jul 15;264(20):12016–12024. [PubMed] [Google Scholar]
  185. Oka J. A., Weigel P. H. Monensin inhibits ligand dissociation only transiently and partially and distinguishes two galactosyl receptor pathways in isolated rat hepatocytes. J Cell Physiol. 1987 Nov;133(2):243-52, 257. doi: 10.1002/jcp.1041330207. [DOI] [PubMed] [Google Scholar]
  186. Opresko L. K., Karpf R. A. Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes. Cell. 1987 Nov 20;51(4):557–568. doi: 10.1016/0092-8674(87)90125-5. [DOI] [PubMed] [Google Scholar]
  187. Opresko L., Wiley H. S., Wallace R. A. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Cell. 1980 Nov;22(1 Pt 1):47–57. doi: 10.1016/0092-8674(80)90153-1. [DOI] [PubMed] [Google Scholar]
  188. Pease R. J., Smith G. D., Peters T. J. Characterization of insulin degradation by rat-liver low-density vesicles. Eur J Biochem. 1987 Apr 1;164(1):251–257. doi: 10.1111/j.1432-1033.1987.tb11018.x. [DOI] [PubMed] [Google Scholar]
  189. Peters P. J., Neefjes J. J., Oorschot V., Ploegh H. L., Geuze H. J. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991 Feb 21;349(6311):669–676. doi: 10.1038/349669a0. [DOI] [PubMed] [Google Scholar]
  190. Pieters J., Bakke O., Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci. 1993 Nov;106(Pt 3):831–846. doi: 10.1242/jcs.106.3.831. [DOI] [PubMed] [Google Scholar]
  191. Pieters J., Horstmann H., Bakke O., Griffiths G., Lipp J. Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol. 1991 Dec;115(5):1213–1223. doi: 10.1083/jcb.115.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Pillai S., Zull J. E. Production of biologically active fragments of parathyroid hormone by isolated Kupffer cells. J Biol Chem. 1986 Nov 15;261(32):14919–14923. [PubMed] [Google Scholar]
  193. Pitt A., Mayorga L. S., Schwartz A. L., Stahl P. D. Transport of phagosomal components to an endosomal compartment. J Biol Chem. 1992 Jan 5;267(1):126–132. [PubMed] [Google Scholar]
  194. Pittman R. C., Carew T. E., Glass C. K., Green S. R., Taylor C. A., Jr, Attie A. D. A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem J. 1983 Jun 15;212(3):791–800. doi: 10.1042/bj2120791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Planck S. R., Finch J. S., Magun B. E. Intracellular processing of epidermal growth factor. II. Intracellular cleavage of the COOH-terminal region of 125I-epidermal growth factor. J Biol Chem. 1984 Mar 10;259(5):3053–3057. [PubMed] [Google Scholar]
  196. Pohl S. L., Krans H. M., Birnbaumer L., Rodbell M. Inactivation of glucagon by plasma membranes of rat liver. J Biol Chem. 1972 Apr 25;247(8):2295–2301. [PubMed] [Google Scholar]
  197. Polgár L., Csoma C. Dissociation of ionizing groups in the binding cleft inversely controls the endo- and exopeptidase activities of cathepsin B. J Biol Chem. 1987 Oct 25;262(30):14448–14453. [PubMed] [Google Scholar]
  198. Posner B. I., Patel B. A., Khan M. N., Bergeron J. J. Effect of chloroquine on the internalization of 125I-insulin into subcellular fractions of rat liver. Evidence for an effect of chloroquine on Golgi elements. J Biol Chem. 1982 May 25;257(10):5789–5799. [PubMed] [Google Scholar]
  199. Puizdar V., Turk V. Cathepsinogen D: characterization and activation to cathepsin D and inhibitory peptides. FEBS Lett. 1981 Sep 28;132(2):299–304. doi: 10.1016/0014-5793(81)81184-2. [DOI] [PubMed] [Google Scholar]
  200. Puré E., Inaba K., Crowley M. T., Tardelli L., Witmer-Pack M. D., Ruberti G., Fathman G., Steinman R. M. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med. 1990 Nov 1;172(5):1459–1469. doi: 10.1084/jem.172.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Qiu Y., Xu X., Wandinger-Ness A., Dalke D. P., Pierce S. K. Separation of subcellular compartments containing distinct functional forms of MHC class II. J Cell Biol. 1994 May;125(3):595–605. doi: 10.1083/jcb.125.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Rabinowitz S., Horstmann H., Gordon S., Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol. 1992 Jan;116(1):95–112. doi: 10.1083/jcb.116.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Racoosin E. L., Swanson J. A. M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci. 1992 Aug;102(Pt 4):867–880. doi: 10.1242/jcs.102.4.867. [DOI] [PubMed] [Google Scholar]
  204. Racoosin E. L., Swanson J. A. Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J Exp Med. 1989 Nov 1;170(5):1635–1648. doi: 10.1084/jem.170.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Racoosin E. L., Swanson J. A. Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol. 1993 Jun;121(5):1011–1020. doi: 10.1083/jcb.121.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Renfrew C. A., Hubbard A. L. Degradation of epidermal growth factor receptor in rat liver. Membrane topology through the lysosomal pathway. J Biol Chem. 1991 Nov 5;266(31):21265–21273. [PubMed] [Google Scholar]
  207. Renfrew C. A., Hubbard A. L. Sequential processing of epidermal growth factor in early and late endosomes of rat liver. J Biol Chem. 1991 Mar 5;266(7):4348–4356. [PubMed] [Google Scholar]
  208. Retzek H., Steyrer E., Sanders E. J., Nimpf J., Schneider W. J. Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA Cell Biol. 1992 Nov;11(9):661–672. doi: 10.1089/dna.1992.11.661. [DOI] [PubMed] [Google Scholar]
  209. Riberdy J. M., Newcomb J. R., Surman M. J., Barbosa J. A., Cresswell P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature. 1992 Dec 3;360(6403):474–477. doi: 10.1038/360474a0. [DOI] [PubMed] [Google Scholar]
  210. Rijnboutt S., Stoorvogel W., Geuze H. J., Strous G. J. Identification of subcellular compartments involved in biosynthetic processing of cathepsin D. J Biol Chem. 1992 Aug 5;267(22):15665–15672. [PubMed] [Google Scholar]
  211. Roche P. A., Cresswell P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature. 1990 Jun 14;345(6276):615–618. doi: 10.1038/345615a0. [DOI] [PubMed] [Google Scholar]
  212. Roche P. A., Cresswell P. Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3150–3154. doi: 10.1073/pnas.88.8.3150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Roche P. A., Teletski C. L., Karp D. R., Pinet V., Bakke O., Long E. O. Stable surface expression of invariant chain prevents peptide presentation by HLA-DR. EMBO J. 1992 Aug;11(8):2841–2847. doi: 10.1002/j.1460-2075.1992.tb05351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Roche P. A., Teletski C. L., Stang E., Bakke O., Long E. O. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8581–8585. doi: 10.1073/pnas.90.18.8581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Rodman J. S., Schlesinger P., Stahl P. Rat plasma clearance of horseradish peroxidase and yeast invertase is mediated by specific recognition. FEBS Lett. 1978 Jan 15;85(2):345–348. doi: 10.1016/0014-5793(78)80488-8. [DOI] [PubMed] [Google Scholar]
  216. Roederer M., Bowser R., Murphy R. F. Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: evidence for a maturation model for the formation of lysosomes. J Cell Physiol. 1987 May;131(2):200–209. doi: 10.1002/jcp.1041310209. [DOI] [PubMed] [Google Scholar]
  217. Romagnoli P., Layet C., Yewdell J., Bakke O., Germain R. N. Relationship between invariant chain expression and major histocompatibility complex class II transport into early and late endocytic compartments. J Exp Med. 1993 Mar 1;177(3):583–596. doi: 10.1084/jem.177.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Rose K., Savoy L. A., Muir A. V., Davies J. G., Offord R. E., Turcatti G. Insulin proteinase liberates from glucagon a fragment known to have enhanced activity against Ca2+ + Mg2+-dependent ATPase. Biochem J. 1988 Dec 15;256(3):847–851. doi: 10.1042/bj2560847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Rudensky AYu, Preston-Hurlburt P., Hong S. C., Barlow A., Janeway C. A., Jr Sequence analysis of peptides bound to MHC class II molecules. Nature. 1991 Oct 17;353(6345):622–627. doi: 10.1038/353622a0. [DOI] [PubMed] [Google Scholar]
  220. Runquist E. A., Havel R. J. Acid hydrolases in early and late endosome fractions from rat liver. J Biol Chem. 1991 Nov 25;266(33):22557–22563. [PubMed] [Google Scholar]
  221. Sadegh-Nasseri S., Germain R. N. A role for peptide in determining MHC class II structure. Nature. 1991 Sep 12;353(6340):167–170. doi: 10.1038/353167a0. [DOI] [PubMed] [Google Scholar]
  222. Saito T., Tomita Y., Kimura M., Nishiyama T., Sato S. [Expression of HLA class II antigen-associated invariant chain on renal cell cancer]. Nihon Hinyokika Gakkai Zasshi. 1993 Jun;84(6):1036–1040. doi: 10.5980/jpnjurol1989.84.1036. [DOI] [PubMed] [Google Scholar]
  223. Salminen A., Gottesman M. M. Inhibitor studies indicate that active cathepsin L is probably essential to its own processing in cultured fibroblasts. Biochem J. 1990 Nov 15;272(1):39–44. doi: 10.1042/bj2720039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Sandoval I. V., Bakke O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 1994 Aug;4(8):292–297. doi: 10.1016/0962-8924(94)90220-8. [DOI] [PubMed] [Google Scholar]
  225. Sandvig K., van Deurs B. Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J Biol Chem. 1990 Apr 15;265(11):6382–6388. [PubMed] [Google Scholar]
  226. Sant A. J., Miller J. MHC class II antigen processing: biology of invariant chain. Curr Opin Immunol. 1994 Feb;6(1):57–63. doi: 10.1016/0952-7915(94)90034-5. [DOI] [PubMed] [Google Scholar]
  227. Schaudies R. P., Gorman R. M., Savage C. R., Jr, Poretz R. D. Proteolytic processing of epidermal growth factor within endosomes. Biochem Biophys Res Commun. 1987 Mar 13;143(2):710–715. doi: 10.1016/0006-291x(87)91412-4. [DOI] [PubMed] [Google Scholar]
  228. Schaudies R. P., Savage C. R., Jr Intracellular modification of 125I-labeled epidermal growth factor by normal human foreskin fibroblasts. Endocrinology. 1986 Feb;118(2):875–882. doi: 10.1210/endo-118-2-875. [DOI] [PubMed] [Google Scholar]
  229. Schmid S. L., Jackson M. R. Immunology. Making class II presentable. Nature. 1994 May 12;369(6476):103–104. doi: 10.1038/369103a0. [DOI] [PubMed] [Google Scholar]
  230. Seglen P. O., Solheim A. E. Conversion of dense lysosomes into light lysosomes during hepatocytic autophagy. Exp Cell Res. 1985 Apr;157(2):550–555. doi: 10.1016/0014-4827(85)90141-7. [DOI] [PubMed] [Google Scholar]
  231. Segre G. V., Perkins A. S., Witters L. A., Potts J. t., Jr Metabolism of parathyroid hormone by isolated rat Kupffer cells and hepatocytes. J Clin Invest. 1981 Feb;67(2):449–457. doi: 10.1172/JCI110053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Sette A., Adorini L., Colon S. M., Buus S., Grey H. M. Capacity of intact proteins to bind to MHC class II molecules. J Immunol. 1989 Aug 15;143(4):1265–1267. [PubMed] [Google Scholar]
  233. Sette A., Ceman S., Kubo R. T., Sakaguchi K., Appella E., Hunt D. F., Davis T. A., Michel H., Shabanowitz J., Rudersdorf R. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science. 1992 Dec 11;258(5089):1801–1804. doi: 10.1126/science.1465617. [DOI] [PubMed] [Google Scholar]
  234. Sheetz M. J., Tager H. S. Characterization of a glucagon receptor-linked protease from canine hepatic plasma membranes. Partial purification, kinetic analysis, and determination of sites for hormone processing. J Biol Chem. 1988 Dec 15;263(35):19210–19217. [PubMed] [Google Scholar]
  235. Sheetz M. J., Tager H. S. Receptor-linked proteolysis of membrane-bound glucagon yields a membrane-associated hormone fragment. J Biol Chem. 1988 Jun 15;263(17):8509–8514. [PubMed] [Google Scholar]
  236. Shii K., Roth R. A. Inhibition of insulin degradation by hepatoma cells after microinjection of monoclonal antibodies to a specific cytosolic protease. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4147–4151. doi: 10.1073/pnas.83.12.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Simonsen A., Momburg F., Drexler J., Hämmerling G. J., Bakke O. Intracellular distribution of the MHC class II molecules and the associated invariant chain (Ii) in different cell lines. Int Immunol. 1993 Aug;5(8):903–917. doi: 10.1093/intimm/5.8.903. [DOI] [PubMed] [Google Scholar]
  238. Sly W. S., Fischer H. D. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J Cell Biochem. 1982;18(1):67–85. doi: 10.1002/jcb.1982.240180107. [DOI] [PubMed] [Google Scholar]
  239. Smith G. D., Christensen J. R., Rideout J. M., Peters T. J. Hepatic processing of insulin. Characterization of differential inhibition by weak bases. Eur J Biochem. 1989 May 1;181(2):287–294. doi: 10.1111/j.1432-1033.1989.tb14723.x. [DOI] [PubMed] [Google Scholar]
  240. Sonne O. Receptor-mediated endocytosis and degradation of insulin. Physiol Rev. 1988 Oct;68(4):1129–1196. doi: 10.1152/physrev.1988.68.4.1129. [DOI] [PubMed] [Google Scholar]
  241. Stoorvogel W., Schwartz A. L., Strous G. J., Fallon R. J. A pool of intracellular phosphorylated asialoglycoprotein receptors which is not involved in endocytosis. J Biol Chem. 1991 Mar 25;266(9):5438–5444. [PubMed] [Google Scholar]
  242. Stössel H., Koch F., Kämpgen E., Stöger P., Lenz A., Heufler C., Romani N., Schuler G. Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells. J Exp Med. 1990 Nov 1;172(5):1471–1482. doi: 10.1084/jem.172.5.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Sung E., Jones P. P. The invariant chain of murine Ia antigens: its glycosylation, abundance and subcellular localization. Mol Immunol. 1981 Oct;18(10):899–913. doi: 10.1016/0161-5890(81)90013-4. [DOI] [PubMed] [Google Scholar]
  244. Swanson J. A. Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J Cell Sci. 1989 Sep;94(Pt 1):135–142. doi: 10.1242/jcs.94.1.135. [DOI] [PubMed] [Google Scholar]
  245. Swanson J., Bushnell A., Silverstein S. C. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1921–1925. doi: 10.1073/pnas.84.7.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Takahashi H., Cease K. B., Berzofsky J. A. Identification of proteases that process distinct epitopes on the same protein. J Immunol. 1989 Apr 1;142(7):2221–2229. [PubMed] [Google Scholar]
  247. Thomas D. J., Richards A. D., Jupp R. A., Ueno E., Yamamoto K., Samloff I. M., Dunn B. M., Kay J. Stabilisation of cathepsin E by ATP. FEBS Lett. 1989 Jan 30;243(2):145–148. doi: 10.1016/0014-5793(89)80117-6. [DOI] [PubMed] [Google Scholar]
  248. Tolleshaug H., Berg T. The effect of leupeptin on intracellular digestion of asialofetuin in rat hepatocytes. Exp Cell Res. 1981 Jul;134(1):207–217. doi: 10.1016/0014-4827(81)90478-x. [DOI] [PubMed] [Google Scholar]
  249. Trowbridge I. S., Collawn J. F., Hopkins C. R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol. 1993;9:129–161. doi: 10.1146/annurev.cb.09.110193.001021. [DOI] [PubMed] [Google Scholar]
  250. Tulp A., Verwoerd D., Dobberstein B., Ploegh H. L., Pieters J. Isolation and characterization of the intracellular MHC class II compartment. Nature. 1994 May 12;369(6476):120–126. doi: 10.1038/369120a0. [DOI] [PubMed] [Google Scholar]
  251. Ullrich A., Coussens L., Hayflick J. S., Dull T. J., Gray A., Tam A. W., Lee J., Yarden Y., Libermann T. A., Schlessinger J. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. 1984 May 31-Jun 6Nature. 309(5967):418–425. doi: 10.1038/309418a0. [DOI] [PubMed] [Google Scholar]
  252. Van Noort J. M., Boon J., Van der Drift A. C., Wagenaar J. P., Boots A. M., Boog C. J. Antigen processing by endosomal proteases determines which sites of sperm-whale myoglobin are eventually recognized by T cells. Eur J Immunol. 1991 Sep;21(9):1989–1996. doi: 10.1002/eji.1830210904. [DOI] [PubMed] [Google Scholar]
  253. Vidard L., Rock K. L., Benacerraf B. The generation of immunogenic peptides can be selectively increased or decreased by proteolytic enzyme inhibitors. J Immunol. 1991 Sep 15;147(6):1786–1791. [PubMed] [Google Scholar]
  254. Viville S., Neefjes J., Lotteau V., Dierich A., Lemeur M., Ploegh H., Benoist C., Mathis D. Mice lacking the MHC class II-associated invariant chain. Cell. 1993 Feb 26;72(4):635–648. doi: 10.1016/0092-8674(93)90081-z. [DOI] [PubMed] [Google Scholar]
  255. Wall D. A., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments. J Cell Biol. 1985 Dec;101(6):2104–2112. doi: 10.1083/jcb.101.6.2104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Wall D. A., Meleka I. An unusual lysosome compartment involved in vitellogenin endocytosis by Xenopus oocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1651–1664. doi: 10.1083/jcb.101.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Wattiaux R., Gentinne F., Jadot M., Dubois F., Wattiaux-De Coninck S. Chloroquine allows to distinguish between hepatocyte lysosomes and sinusoidal cell lysosomes. Biochem Biophys Res Commun. 1993 Feb 15;190(3):808–813. doi: 10.1006/bbrc.1993.1121. [DOI] [PubMed] [Google Scholar]
  258. Wattiaux R., Jadot M., Misquith S., Wattiaux-de Coninck S. Characterization of endocytic components of liver nonparenchymal cells. Subcell Biochem. 1993;19:163–194. doi: 10.1007/978-1-4615-3026-8_6. [DOI] [PubMed] [Google Scholar]
  259. Wattiaux R., Misquith S., Wattiaux-De Coninck S., Dubois F. Fate of asialofetuin endocytosed by rat liver. Biochem Biophys Res Commun. 1989 Jan 16;158(1):313–318. doi: 10.1016/s0006-291x(89)80214-1. [DOI] [PubMed] [Google Scholar]
  260. Watts C., Marsh M. Endocytosis: what goes in and how? J Cell Sci. 1992 Sep;103(Pt 1):1–8. doi: 10.1242/jcs.103.1.1a. [DOI] [PubMed] [Google Scholar]
  261. West M. A., Bretscher M. S., Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol. 1989 Dec;109(6 Pt 1):2731–2739. doi: 10.1083/jcb.109.6.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. West M. A., Lucocq J. M., Watts C. Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature. 1994 May 12;369(6476):147–151. doi: 10.1038/369147a0. [DOI] [PubMed] [Google Scholar]
  263. Wiederanders B., Kirschke H. The processing of a cathepsin L precursor in vitro. Arch Biochem Biophys. 1989 Aug 1;272(2):516–521. doi: 10.1016/0003-9861(89)90247-6. [DOI] [PubMed] [Google Scholar]
  264. Wiley H. S., VanNostrand W., McKinley D. N., Cunningham D. D. Intracellular processing of epidermal growth factor and its effect on ligand-receptor interactions. J Biol Chem. 1985 May 10;260(9):5290–5295. [PubMed] [Google Scholar]
  265. Yaso S., Yokono K., Hari J., Yonezawa K., Shii K., Baba S. Possible role of cell surface insulin degrading enzyme in cultured human lymphocytes. Diabetologia. 1987 Jan;30(1):27–32. doi: 10.1007/BF01788903. [DOI] [PubMed] [Google Scholar]
  266. Yu K. T., Czech M. P. Tyrosine phosphorylation of the insulin receptor beta subunit activates the receptor-associated tyrosine kinase activity. J Biol Chem. 1984 Apr 25;259(8):5277–5286. [PubMed] [Google Scholar]
  267. Zachgo S., Dobberstein B., Griffiths G. A block in degradation of MHC class II-associated invariant chain correlates with a reduction in transport from endosome carrier vesicles to the prelysosome compartment. J Cell Sci. 1992 Nov;103(Pt 3):811–822. doi: 10.1242/jcs.103.3.811. [DOI] [PubMed] [Google Scholar]
  268. Ziegler H. K., Unanue E. R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):175–178. doi: 10.1073/pnas.79.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Zull J. E., Chuang J. Characterization of parathyroid hormone fragments produced by cathepsin D. J Biol Chem. 1985 Feb 10;260(3):1608–1613. [PubMed] [Google Scholar]
  270. van Deurs B., Holm P. K., Kayser L., Sandvig K., Hansen S. H. Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur J Cell Biol. 1993 Aug;61(2):208–224. [PubMed] [Google Scholar]
  271. van Deurs B., Holm P. K., Sandvig K., Hansen S. H. Are caveolae involved in clathrin-independent endocytosis? Trends Cell Biol. 1993 Aug;3(8):249–251. doi: 10.1016/0962-8924(93)90045-3. [DOI] [PubMed] [Google Scholar]
  272. van Deurs B., Petersen O. W., Olsnes S., Sandvig K. The ways of endocytosis. Int Rev Cytol. 1989;117:131–177. doi: 10.1016/s0074-7696(08)61336-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES