Abstract
Subtilisin and delta-chymotrypsin have been alkylated using 2-13C-enriched benzyloxycarbonylglycylglycylphenylalanylchloromethane. A single signal due to the 13C-enriched carbon was detected in both the intact subtilisin and delta-chymotrypsin derivatives. The signal titrated from 98.9 p.p.m. to 103.6 p.p.m. with a pKa value of 6.9 in the subtilisin derivative and it is assigned to a tetrahedral adduct formed between the hydroxy group of serine-221 and the inhibitor. The signal in the delta-chymotrypsin derivative titrated from 98.5 p.p.m. to 103.2 p.p.m. with a pKa value of 8.92 and it is assigned to a tetrahedral adduct formed between the hydroxy group of serine-195 and the inhibitor. In both derivatives the titration shift is assigned to the formation of the oxyanion of the tetrahedral adduct. delta-Chymotrypsin has been inhibited by benzyloxycarbonylphenylalanylchloromethane and two signals due to 13C-enriched carbons were detected. One of these signals titrated from 98.8 p.p.m. to 103.6 p.p.m. with a pKa value of 9.4 and it was assigned in the same way as in the previous delta-chymotrypsin derivative. The second signal had a chemical shift of 204.5 +/- 0.5 p.p.m. and it did not titrate from pH 3.5 to 9.0. This signal was assigned to alkylated methionine-192. We discuss how subtilisin and chymotrypsin could stabilize the oxyanion of tetrahedral adducts.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bender M. L., Begué-Cantón M. L., Blakeley R. L., Brubacher L. J., Feder J., Gunter C. R., Kézdy F. J., Killheffer J. V., Jr, Marshall T. H., Miller C. G. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. J Am Chem Soc. 1966 Dec 20;88(24):5890–5913. doi: 10.1021/ja00976a034. [DOI] [PubMed] [Google Scholar]
- Brenner C., Bevan A., Fuller R. S. One-step site-directed mutagenesis of the Kex2 protease oxyanion hole. Curr Biol. 1993 Aug 1;3(8):498–506. doi: 10.1016/0960-9822(93)90040-u. [DOI] [PubMed] [Google Scholar]
- Bryan P., Pantoliano M. W., Quill S. G., Hsiao H. Y., Poulos T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3743–3745. doi: 10.1073/pnas.83.11.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter P., Wells J. A. Functional interaction among catalytic residues in subtilisin BPN'. Proteins. 1990;7(4):335–342. doi: 10.1002/prot.340070405. [DOI] [PubMed] [Google Scholar]
- Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994 Jun 24;264(5167):1887–1890. doi: 10.1126/science.8009219. [DOI] [PubMed] [Google Scholar]
- Cleland W. W. Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions. Biochemistry. 1992 Jan 21;31(2):317–319. doi: 10.1021/bi00117a001. [DOI] [PubMed] [Google Scholar]
- Coggins J. R., Kray W., Shaw E. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone. Biochem J. 1974 Mar;137(3):579–585. doi: 10.1042/bj1370579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finucane M. D., Hudson E. A., Malthouse J. P. A 13C-n.m.r. investigation of the ionizations within an inhibitor--alpha-chymotrypsin complex. Evidence that both alpha-chymotrypsin and trypsin stabilize a hemiketal oxyanion by similar mechanisms. Biochem J. 1989 Mar 15;258(3):853–859. doi: 10.1042/bj2580853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finucane M. D., Malthouse J. P. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin. Biochem J. 1992 Sep 15;286(Pt 3):889–900. doi: 10.1042/bj2860889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frey P. A., Whitt S. A., Tobin J. B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science. 1994 Jun 24;264(5167):1927–1930. doi: 10.1126/science.7661899. [DOI] [PubMed] [Google Scholar]
- Gerlt J. A., Gassman P. G. Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry. 1993 Nov 16;32(45):11943–11952. doi: 10.1021/bi00096a001. [DOI] [PubMed] [Google Scholar]
- Kézdy F. J., Thomson A., Bender M. L. Studies on the reaction of chymotrypsin and L-1-chloro-3-tosylamido-4-phenyl-2-butanone. J Am Chem Soc. 1967 Feb 15;89(4):1004–1009. doi: 10.1021/ja00980a044. [DOI] [PubMed] [Google Scholar]
- Liang T. C., Abeles R. H. Complex of alpha-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy. Biochemistry. 1987 Dec 1;26(24):7603–7608. doi: 10.1021/bi00398a011. [DOI] [PubMed] [Google Scholar]
- MATSUBARA H., KASPER C. B., BROWN D. M., SMITH E. L. SUBTILISIN BPN'. I. PHYSICAL PROPERTIES AND AMINO ACID COMPOSITION. J Biol Chem. 1965 Mar;240:1125–1130. [PubMed] [Google Scholar]
- Malthouse J. P., Finucane M. D. A study of the relaxation parameters of a 13C-enriched methylene carbon and a 13C-enriched perdeuteromethylene carbon attached to chymotrypsin. Biochem J. 1991 Dec 15;280(Pt 3):649–657. doi: 10.1042/bj2800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malthouse J. P., Primrose W. U., Mackenzie N. E., Scott A. I. 13C NMR study of the ionizations within a trypsin-chloromethyl ketone inhibitor complex. Biochemistry. 1985 Jul 2;24(14):3478–3487. doi: 10.1021/bi00335a014. [DOI] [PubMed] [Google Scholar]
- Morihara K., Oka T. Subtilisin BPN': inactivation by chloromethyl ketone derivates of peptide substrates. Arch Biochem Biophys. 1970 Jun;138(2):526–531. doi: 10.1016/0003-9861(70)90377-2. [DOI] [PubMed] [Google Scholar]
- ONG E. B., SHAW E., SCHOELLMANN G. THE IDENTIFICATION OF THE HISTIDINE RESIDUE AT THE ACTIVE CENTER OF CHYMOTRYPSIN. J Biol Chem. 1965 Feb;240:694–698. [PubMed] [Google Scholar]
- Poulos T. L., Alden R. A., Freer S. T., Birktoft J. J., Kraut J. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin. J Biol Chem. 1976 Feb 25;251(4):1097–1103. [PubMed] [Google Scholar]
- Powers J. C., Lively M. O., 3rd, Tippett J. T. Inhibition of subtilisin BPN' with peptide chloromethyl ketones. Biochim Biophys Acta. 1977 Jan 11;480(1):246–261. doi: 10.1016/0005-2744(77)90338-2. [DOI] [PubMed] [Google Scholar]
- Primrose W. U., Scott A. I., Mackenzie N. E., Malthouse J. P. A 13C-n.m.r. investigation of ionizations within a trypsin-inhibitor complex. Evidence that the pKa of histidine-57 is raised by interaction with the hemiketal oxyanion. Biochem J. 1985 Nov 1;231(3):677–682. doi: 10.1042/bj2310677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHOELLMANN G., SHAW E. Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry. 1963 Mar-Apr;2:252–255. doi: 10.1021/bi00902a008. [DOI] [PubMed] [Google Scholar]
- SCHONBAUM G. R., ZERNER B., BENDER M. L. The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution. J Biol Chem. 1961 Nov;236:2930–2935. [PubMed] [Google Scholar]
- Segal D. M., Powers J. C., Cohen G. H., Davies D. R., Wilcox P. E. Substrate binding site in bovine chymotrypsin A-gamma. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. Biochemistry. 1971 Sep 28;10(20):3728–3738. doi: 10.1021/bi00796a014. [DOI] [PubMed] [Google Scholar]
- Shaw E., Ruscica J. The essentiality of histidine in the catalytic action of subtilisin. Covalent modification by a specific reagent. J Biol Chem. 1968 Dec 10;243(23):6312–6313. [PubMed] [Google Scholar]
- Shaw E., Springhorn S. Identification of the histidine residue at the active center of trypsin labelled by TLCK. Biochem Biophys Res Commun. 1967 May 5;27(3):391–397. doi: 10.1016/s0006-291x(67)80112-8. [DOI] [PubMed] [Google Scholar]
- Warshel A. Energetics of enzyme catalysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5250–5254. doi: 10.1073/pnas.75.11.5250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Naray-Szabo G., Sussman F., Hwang J. K. How do serine proteases really work? Biochemistry. 1989 May 2;28(9):3629–3637. doi: 10.1021/bi00435a001. [DOI] [PubMed] [Google Scholar]
- Wells J. A., Ferrari E., Henner D. J., Estell D. A., Chen E. Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983 Nov 25;11(22):7911–7925. doi: 10.1093/nar/11.22.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright C. S. Comparison of the active site stereochemistry and substrate conformation in -chymotrypsin and subtilisin BPN'. J Mol Biol. 1972 Jun 14;67(1):151–163. doi: 10.1016/0022-2836(72)90391-9. [DOI] [PubMed] [Google Scholar]
