Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 15;307(Pt 2):369–375. doi: 10.1042/bj3070369

Rabbit alpha-1-antiproteinase E: a novel recombinant serpin which does not inhibit proteinases.

A Saito 1, H Sinohara 1
PMCID: PMC1136658  PMID: 7733871

Abstract

A cDNA coding for the E isoform of alpha-1-antiproteinase (also called alpha-1-antitrypsin or alpha-1-proteinase inhibitor) was isolated by oligonucleotide hybridization following immunochemical screening of the rabbit liver cDNA library. The deduced amino acid sequence of the E isoform showed 96.4% identity in 413 residues of the F and S-1 isoforms of rabbit alpha-1-antiproteinase. The N-terminal half of the amino acid residues of the three isoforms was almost identical, but the putative reactive-site loop structure (P8-P'8) was significantly different in the various forms, the P1 site of the E form being glutamic acid. Interaction of the recombinant E form with the various proteinases was investigated by SDS/PAGE, followed by immunoblot analysis. The recombinant protein and trypsin formed a 62 kDa equimolar complex, which gradually became graded to the 37 kDa fragment through several intermediates. The E form also formed a complex of a similar size with elastase and became degraded to the 31 kDa fragment. Several proteinases which cleaved the E form without forming a detectable complex on SDS/PAGE are chymotrypsin, protease V8, pancreas kallikrein, thermolysin, papain and ficin. Other proteinases, with a stringent substrate specificity, such as thrombin, factor Xa, plasmin, plasma kallikrein and cathepsin G, did not attack the E form. Unlike the F and S-1 forms of rabbit plasma alpha-1-antiproteinase, the recombinant E form did not inhibit the amidolytic and proteolytic activities of trypsin. Neither elastase nor protease V8 was inhibited by the E form. Thus the change in the amino acid residues in the reactive-site loop, probably in the P1 site, is responsible for the loss of inhibitory activity of rabbit alpha-1-antiproteinase E. The novel character of the E form could provide a new insight into the interaction of serpin and proteinases.

Full text

PDF
369

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown W. M., Dziegielewska K. M., Foreman R. C., Saunders N. R., Wu Y. Nucleotide and deduced amino acid sequence of sheep alpha 1 antitrypsin. Nucleic Acids Res. 1989 Aug 11;17(15):6398–6398. doi: 10.1093/nar/17.15.6398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  3. Catanese J. J., Kress L. F. Opossum serum alpha 1-proteinase inhibitor: purification, linear sequence, and resistance to inactivation by rattlesnake venom metalloproteinases. Biochemistry. 1993 Jan 19;32(2):509–515. doi: 10.1021/bi00053a015. [DOI] [PubMed] [Google Scholar]
  4. Chao S., Chai K. X., Chao L., Chao J. Molecular cloning and primary structure of rat alpha 1-antitrypsin. Biochemistry. 1990 Jan 16;29(2):323–329. doi: 10.1021/bi00454a004. [DOI] [PubMed] [Google Scholar]
  5. Ganrot P. O. Determination of alpha-2-macroglobulin as trypsin-protein esterase. Clin Chim Acta. 1966 Oct;14(4):493–501. doi: 10.1016/0009-8981(66)90037-4. [DOI] [PubMed] [Google Scholar]
  6. Goto K., Suzuki Y., Yoshida K., Yamamoto K., Sinohara H. Plasma alpha-1-antiproteinase from the Mongolian gerbil, Meriones unguiculatus: isolation, partial characterization, sequencing of cDNA, and implications for molecular evolution. J Biochem. 1994 Sep;116(3):582–588. doi: 10.1093/oxfordjournals.jbchem.a124564. [DOI] [PubMed] [Google Scholar]
  7. Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
  8. Jallat S., Carvallo D., Tessier L. H., Roecklin D., Roitsch C., Ogushi F., Crystal R. G., Courtney M. Altered specificities of genetically engineered alpha 1 antitrypsin variants. Protein Eng. 1986 Oct-Nov;1(1):29–35. doi: 10.1093/protein/1.1.29. [DOI] [PubMed] [Google Scholar]
  9. Koj A., Hatton M. W., Wong K. L., Regoeczi E. Isolation and partial characterization of rabbit plasma alpha1-antitrypsin. Biochem J. 1978 Mar 1;169(3):589–596. doi: 10.1042/bj1690589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leicht M., Long G. L., Chandra T., Kurachi K., Kidd V. J., Mace M., Jr, Davie E. W., Woo S. L. Sequence homology and structural comparison between the chromosomal human alpha 1-antitrypsin and chicken ovalbumin genes. Nature. 1982 Jun 24;297(5868):655–659. doi: 10.1038/297655a0. [DOI] [PubMed] [Google Scholar]
  11. Long G. L., Chandra T., Woo S. L., Davie E. W., Kurachi K. Complete sequence of the cDNA for human alpha 1-antitrypsin and the gene for the S variant. Biochemistry. 1984 Oct 9;23(21):4828–4837. doi: 10.1021/bi00316a003. [DOI] [PubMed] [Google Scholar]
  12. Owen M. C., Brennan S. O., Lewis J. H., Carrell R. W. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983 Sep 22;309(12):694–698. doi: 10.1056/NEJM198309223091203. [DOI] [PubMed] [Google Scholar]
  13. Ray B. K., Gao X., Ray A. Expression and structural analysis of a novel highly inducible gene encoding alpha 1-antitrypsin in rabbit. J Biol Chem. 1994 Sep 2;269(35):22080–22086. [PubMed] [Google Scholar]
  14. Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D. J. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell. 1992 May 15;69(4):597–604. doi: 10.1016/0092-8674(92)90223-y. [DOI] [PubMed] [Google Scholar]
  15. Rubin H., Wang Z. M., Nickbarg E. B., McLarney S., Naidoo N., Schoenberger O. L., Johnson J. L., Cooperman B. S. Cloning, expression, purification, and biological activity of recombinant native and variant human alpha 1-antichymotrypsins. J Biol Chem. 1990 Jan 15;265(2):1199–1207. [PubMed] [Google Scholar]
  16. Saito A., Sinohara H. Amino acid sequence at the reactive site of rabbit alpha-1-antiproteinases. J Biochem. 1990 Jul;108(1):80–85. doi: 10.1093/oxfordjournals.jbchem.a123167. [DOI] [PubMed] [Google Scholar]
  17. Saito A., Sinohara H. Cloning and sequencing of cDNA coding for rabbit alpha-1-antiproteinase F: amino acid sequence comparison of alpha-1-antiproteinases of six mammals. J Biochem. 1991 Jan;109(1):158–162. doi: 10.1093/oxfordjournals.jbchem.a123338. [DOI] [PubMed] [Google Scholar]
  18. Saito A., Sinohara H. Differential interactions of rabbit plasma alpha-1-antiproteinases S and F with porcine trypsin. J Biochem. 1988 Feb;103(2):247–253. doi: 10.1093/oxfordjournals.jbchem.a122255. [DOI] [PubMed] [Google Scholar]
  19. Saito A., Sinohara H. Murinoglobulin, a novel protease inhibitor from murine plasma. Isolation, characterization, and comparison with murine alpha-macroglobulin and human alpha-2-macroglobulin. J Biol Chem. 1985 Jan 25;260(2):775–781. [PubMed] [Google Scholar]
  20. Saito A., Sinohara H. Rabbit plasma alpha-1-antiproteinase S-1: cloning, sequencing, expression, and proteinase inhibitory properties of recombinant protein. J Biochem. 1993 Apr;113(4):456–461. doi: 10.1093/oxfordjournals.jbchem.a124066. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  23. Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
  24. Sinha D., Bakhshi M. R., Kirby E. P. Complete cDNA sequence of bovine alpha 1-antitrypsin. Biochim Biophys Acta. 1992 Mar 24;1130(2):209–212. doi: 10.1016/0167-4781(92)90530-d. [DOI] [PubMed] [Google Scholar]
  25. Suzuki Y., Yoshida K., Honda E., Sinohara H. Molecular cloning and sequence analysis of cDNAs coding for guinea pig alpha 1-antiproteinases S and F and contrapsin. J Biol Chem. 1991 Jan 15;266(2):928–932. [PubMed] [Google Scholar]
  26. Suzuki Y., Yoshida K., Ichimiya T., Yamamoto T., Sinohara H. Trypsin inhibitors in guinea pig plasma: isolation and characterization of contrapsin and two isoforms of alpha-1-antiproteinase and acute phase response of four major trypsin inhibitors. J Biochem. 1990 Feb;107(2):173–179. doi: 10.1093/oxfordjournals.jbchem.a123021. [DOI] [PubMed] [Google Scholar]
  27. Takahara H., Nakamura Y., Yamamoto K., Sinohara H. Comparative studies on the serum levels of alpha-1-antitrypsin and alpha-macroglobulin in several mammals. Tohoku J Exp Med. 1983 Mar;139(3):265–270. doi: 10.1620/tjem.139.265. [DOI] [PubMed] [Google Scholar]
  28. Takahara H., Sinohara H. Inhibitory spectrum of mouse contrapsin and alpha-1-antitrypsin against mouse serine proteases. J Biochem. 1983 May;93(5):1411–1419. doi: 10.1093/oxfordjournals.jbchem.a134276. [DOI] [PubMed] [Google Scholar]
  29. Wei A., Rubin H., Cooperman B. S., Christianson D. W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nat Struct Biol. 1994 Apr;1(4):251–258. doi: 10.1038/nsb0494-251. [DOI] [PubMed] [Google Scholar]
  30. Wilk S., Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem. 1983 Mar;40(3):842–849. doi: 10.1111/j.1471-4159.1983.tb08056.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES