Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 15;307(Pt 2):557–561. doi: 10.1042/bj3070557

Involvement of the Ca(2+)-dependent phosphorylation of a 20 kDa protein in the proliferative effect of high-density lipoproteins (subclass 3) on the adenocarcinoma cell line A549.

K A Tazi 1, M Bonnafous 1, G Favre 1, G Soula 1, F Le Gaillard 1
PMCID: PMC1136684  PMID: 7733897

Abstract

Previous studies from our laboratory demonstrated that high-density lipoproteins (subclass 3; HDL3) bind to sites specific for apolipoprotein AI on the human adenocarcinoma cell line A549 and that HDL3 binding promotes a mitogenic effect [Favre, Tazi, Le Gaillard, Bennis, Hachem and Soula (1993) J. Lipid Res. 34, 1093-1106]. In the present study, we have examined the cell proteins that showed modified phosphorylation after binding of HDL3 to specific sites, and the roles of Ca2+ and protein kinase C. Native HDL3 (but not tetranitromethane-modified HDL3) and Ca2+ ionophore A23187 strongly enhanced the phosphorylation of a 20 kDa protein (x 3.6) and, to a lower extent, the phosphorylation of 24 and 28 kDa proteins (x 2.2 and 2.6 respectively). The two effectors were equally able to stimulate cell growth. Down-regulation of protein kinase C by a 24 h incubation of cells with phorbol myristate acetate prevented the effects of HDL3 on the phosphorylation of 24 and 28 kDa proteins. However, the extent of phosphorylation of the 20 kDa protein was not affected. In contrast, activation of protein kinase C by a short incubation with phorbol myristate acetate resulted in inhibition of proliferation and an increase in 24 and 28 kDa (but not 20 kDa) protein phosphorylation. These results suggest that HDL3 putative receptors exert their proliferative effect on A549 cells through activation of a Ca(2+)-dependent protein kinase. This kinase activity is not modulated by phorbol ester and thus may be a calmodulin kinase or an isoenzyme of protein kinase C that is independent of phorbol ester. It allows a subsequent 20 kDa protein to be phosphorylated.

Full text

PDF
557

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd N. F., McGuire V. Evidence of association between plasma high-density lipoprotein cholesterol and risk factors for breast cancer. J Natl Cancer Inst. 1990 Mar 21;82(6):460–468. doi: 10.1093/jnci/82.6.460. [DOI] [PubMed] [Google Scholar]
  2. Dale I. L., Bradshaw T. D., Gescher A., Pettit G. R. Comparison of effects of bryostatins 1 and 2 and 12-O-tetradecanoylphorbol-13-acetate on protein kinase C activity in A549 human lung carcinoma cells. Cancer Res. 1989 Jun 15;49(12):3242–3245. [PubMed] [Google Scholar]
  3. Darbon J. M., Tournier J. F., Tauber J. P., Bayard F. Possible role of protein phosphorylation in the mitogenic effect of high density lipoproteins on cultured vascular endothelial cells. J Biol Chem. 1986 Jun 15;261(17):8002–8008. [PubMed] [Google Scholar]
  4. Favre G., Blancy E., Tournier J. F., Soula G. Proliferative effect of high density lipoprotein (HDL) and HDL fractions (HDL1,2, HDL3) on virus transformed lymphoblastoid cells. Biochim Biophys Acta. 1989 Sep 19;1013(2):118–124. doi: 10.1016/0167-4889(89)90039-6. [DOI] [PubMed] [Google Scholar]
  5. Favre G., Tazi K. A., Le Gaillard F., Bennis F., Hachem H., Soula G. High density lipoprotein3 binding sites are related to DNA biosynthesis in the adenocarcinoma cell line A549. J Lipid Res. 1993 Jul;34(7):1093–1106. [PubMed] [Google Scholar]
  6. Ferraroni M., Gerber M., Decarli A., Richardson S., Marubini E., Crastes de Paulet P., Crastes de Paulet A., Pujol H. HDL-cholesterol and breast cancer: a joint study in northern Italy and southern France. Int J Epidemiol. 1993 Oct;22(5):772–780. doi: 10.1093/ije/22.5.772. [DOI] [PubMed] [Google Scholar]
  7. Ferreri K., Menon K. M. Characterization and isolation of a high-density-lipoprotein-binding protein from bovine corpus luteum plasma membrane. Biochem J. 1992 Nov 1;287(Pt 3):841–848. doi: 10.1042/bj2870841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gescher A., Reed D. J. Characterization of the growth inhibition induced by tumor-promoting phorbol esters and of their receptor binding in A549 human lung carcinoma cells. Cancer Res. 1985 Sep;45(9):4315–4321. [PubMed] [Google Scholar]
  9. Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
  10. Gospodarowicz D., Massoglia S., Cheng J., Fujii D. K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986 Apr;127(1):121–136. doi: 10.1002/jcp.1041270116. [DOI] [PubMed] [Google Scholar]
  11. Kaur P., Welch W. J., Saklatvala J. Interleukin 1 and tumour necrosis factor increase phosphorylation of the small heat shock protein. Effects in fibroblasts, Hep G2 and U937 cells. FEBS Lett. 1989 Dec 4;258(2):269–273. doi: 10.1016/0014-5793(89)81671-0. [DOI] [PubMed] [Google Scholar]
  12. Keith C. H., Bajer A. S., Ratan R., Maxfield F. R., Shelanski M. L. Calcium and calmodulin in the regulation of the microtubular cytoskeleton. Ann N Y Acad Sci. 1986;466:375–391. doi: 10.1111/j.1749-6632.1986.tb38407.x. [DOI] [PubMed] [Google Scholar]
  13. Kilsdonk E. P., van Gent T., Dorsman A. N., van Tol A. Binding of modified high density lipoproteins to endothelial cells: relation with cellular cholesterol efflux? Atherosclerosis. 1992 Dec;97(2-3):131–142. doi: 10.1016/0021-9150(92)90126-2. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mendez A. J., Oram J. F., Bierman E. L. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J Biol Chem. 1991 Jun 5;266(16):10104–10111. [PubMed] [Google Scholar]
  16. Murray N. R., Baumgardner G. P., Burns D. J., Fields A. P. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. J Biol Chem. 1993 Jul 25;268(21):15847–15853. [PubMed] [Google Scholar]
  17. Oram J. F., Johnson C. J., Brown T. A. Interaction of high density lipoprotein with its receptor on cultured fibroblasts and macrophages. Evidence for reversible binding at the cell surface without internalization. J Biol Chem. 1987 Feb 15;262(5):2405–2410. [PubMed] [Google Scholar]
  18. Pörn M. I., Akerman K. E., Slotte J. P. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts. Biochem J. 1991 Oct 1;279(Pt 1):29–33. doi: 10.1042/bj2790029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
  20. Regazzi R., Eppenberger U., Fabbro D. The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter-mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Commun. 1988 Apr 15;152(1):62–68. doi: 10.1016/s0006-291x(88)80680-6. [DOI] [PubMed] [Google Scholar]
  21. Reichl D., Simons L. A., Myant N. B., Pflug J. J., Mills G. L. The lipids and lipoproteins of human peripheral lymph, with observations on the transport of cholesterol from plasma and tissues into lymph. Clin Sci Mol Med. 1973 Sep;45(3):313–329. doi: 10.1042/cs0450313. [DOI] [PubMed] [Google Scholar]
  22. Stanwell C., Gescher A., Bradshaw T. D., Pettit G. R. The role of protein kinase C isoenzymes in the growth inhibition caused by bryostatin 1 in human A549 lung and MCF-7 breast carcinoma cells. Int J Cancer. 1994 Feb 15;56(4):585–592. doi: 10.1002/ijc.2910560420. [DOI] [PubMed] [Google Scholar]
  23. Theret N., Delbart C., Aguie G., Fruchart J. C., Vassaux G., Ailhaud G. Cholesterol efflux from adipose cells is coupled to diacylglycerol production and protein kinase C activation. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1361–1368. doi: 10.1016/s0006-291x(05)80938-6. [DOI] [PubMed] [Google Scholar]
  24. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  25. Weisgraber K. H., Mahley R. W. Subfractionation of human high density lipoproteins by heparin-Sepharose affinity chromatography. J Lipid Res. 1980 Mar;21(3):316–325. [PubMed] [Google Scholar]
  26. Wu Y. Q., Handwerger S. High density lipoproteins stimulate molecular weight 80K protein phosphorylation in human trophoblast cells: evidence for a protein kinase-C-dependent pathway in human placental lactogen release. Endocrinology. 1992 Dec;131(6):2935–2940. doi: 10.1210/endo.131.6.1332852. [DOI] [PubMed] [Google Scholar]
  27. Wu Y. Q., Jorgensen E. V., Handwerger S. High density lipoproteins stimulate placental lactogen release and adenosine 3',5'-monophosphate (cAMP) production in human trophoblast cells: evidence for cAMP as a second messenger in human placental lactogen release. Endocrinology. 1988 Oct;123(4):1879–1884. doi: 10.1210/endo-123-4-1879. [DOI] [PubMed] [Google Scholar]
  28. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES