Abstract
We examined the effects of alloxan-diabetes on the kinetic properties of the soluble and the membrane-bound forms of acetylcholinesterase (AChE) in rat brain. The Km (0.15 mM) and Vmax. (1.5 mmol/min per mg of protein) of the soluble form of the enzyme were unchanged in the diabetic animals. The membrane-bound enzyme in the control group displayed a lower Km (0.09 mM) and a higher Vmax. (7.2 mmol/min per mg of protein) compared with the soluble form of the enzyme; the diabetic state caused a significant increase (40%) in both Km and Vmax. Kis values were about 3-4 times higher for the membrane-bound enzyme in both control and diabetic animals. The results suggest that membrane binding and membrane alterations in diabetes can significantly influence the kinetic properties of AChE.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahnak B. R., Gold A. H. Effects of alloxan diabetes on the turnover of rat liver glycogen synthase. Comparison with liver phosphorylase. J Biol Chem. 1982 Aug 10;257(15):8775–8780. [PubMed] [Google Scholar]
- Bakry N. M., Eldefrawi A. T., Eldefrawi M. E., Riker W. F., Jr Interactions of quaternary ammonium drugs with acetylcholinesterase and acetylcholine receptor of Torpedo electric organ. Mol Pharmacol. 1982 Jul;22(1):63–71. [PubMed] [Google Scholar]
- Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
- Bisso G. M., Briancesco R., Michalek H. Size and charge isomers of acetylcholinesterase in the cerebral cortex of young and aged rats. Neurochem Res. 1991 May;16(5):571–575. doi: 10.1007/BF00974876. [DOI] [PubMed] [Google Scholar]
- Carrington A. L., Ettlinger C. B., Calcutt N. A., Tomlinson D. R. Aldose reductase inhibition with imirestat-effects on impulse conduction and insulin-stimulation of Na+/K(+)-adenosine triphosphatase activity in sciatic nerves of streptozotocin-diabetic rats. Diabetologia. 1991 Jun;34(6):397–401. doi: 10.1007/BF00403177. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Kumthekar M. M., Katyare S. S. Altered kinetic attributes of Na(+)+K(+)-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Indian J Exp Biol. 1992 Jan;30(1):26–32. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lenz D. E., Maxwell D. M., Walden M. B. Kinetic properties of soluble and membrane-bound acetylcholinesterase from electric eel. Life Sci. 1984 Jan 16;34(3):219–224. doi: 10.1016/0024-3205(84)90593-9. [DOI] [PubMed] [Google Scholar]
- Mooradian A. D. Blood-brain barrier choline transport is reduced in diabetic rats. Diabetes. 1987 Oct;36(10):1094–1097. doi: 10.2337/diab.36.10.1094. [DOI] [PubMed] [Google Scholar]
- Mooradian A. D., Dickerson F., Smith T. L. Lipid order and composition of synaptic membranes in experimental diabetes mellitus. Neurochem Res. 1990 Oct;15(10):981–985. doi: 10.1007/BF00965743. [DOI] [PubMed] [Google Scholar]
- Nerurkar M. A., Satav J. G., Katyare S. S. Insulin-dependent changes in lysosomal cathepsin D activity in rat liver, kidney, brain and heart. Diabetologia. 1988 Feb;31(2):119–122. doi: 10.1007/BF00395559. [DOI] [PubMed] [Google Scholar]
- Oresković K., Kunec-Vajić E. Pseudocholinesterase in alloxan-diabetic rats. Res Commun Chem Pathol Pharmacol. 1992 Oct;78(1):117–120. [PubMed] [Google Scholar]
- Parks W. C., Drake R. L. Insulin mediates the stimulation of pyruvate kinase by a dual mechanism. Biochem J. 1982 Nov 15;208(2):333–337. doi: 10.1042/bj2080333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlmuter L. C., Hakami M. K., Hodgson-Harrington C., Ginsberg J., Katz J., Singer D. E., Nathan D. M. Decreased cognitive function in aging non-insulin-dependent diabetic patients. Am J Med. 1984 Dec;77(6):1043–1048. doi: 10.1016/0002-9343(84)90186-4. [DOI] [PubMed] [Google Scholar]
- Reisberg B., Ferris S. H., Anand R., Mir P., Geibel V., De Leon M. J., Roberts E. Effects of naloxone in senile dementia: a double-blind trial. N Engl J Med. 1983 Mar 24;308(12):721–722. doi: 10.1056/NEJM198303243081213. [DOI] [PubMed] [Google Scholar]
- Ryan C., Vega A., Drash A. Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics. 1985 May;75(5):921–927. [PubMed] [Google Scholar]
- Striker G. E., Peten E. P., Carome M. A., Pesce C. M., Schmidt K., Yang C. W., Elliot S. J., Striker L. J. The kidney disease of diabetes mellitus (KDDM): a cell and molecular biology approach. Diabetes Metab Rev. 1993 Apr;9(1):37–56. doi: 10.1002/dmr.5610090105. [DOI] [PubMed] [Google Scholar]
- Suhail M., Rizvi S. I. Erythrocyte membrane acetylcholinesterase in type 1 (insulin-dependent) diabetes mellitus. Biochem J. 1989 May 1;259(3):897–899. doi: 10.1042/bj2590897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surridge D. H., Erdahl D. L., Lawson J. S., Donald M. W., Monga T. N., Bird C. E., Letemendia F. J. Psychiatric aspects of diabetes mellitus. Br J Psychiatry. 1984 Sep;145:269–276. doi: 10.1192/bjp.145.3.269. [DOI] [PubMed] [Google Scholar]
- Welsh B., Wecker L. Effects of streptozotocin-induced diabetes on acetylcholine metabolism in rat brain. Neurochem Res. 1991 Apr;16(4):453–460. doi: 10.1007/BF00965566. [DOI] [PubMed] [Google Scholar]