Abstract
We have recently reported that ATP induces an uncoupling pathway in Saccharomyces cerevisiae mitochondria [Prieto, Bouillaud, Ricquier and Rial (1992) Eur. J. Biochem. 208, 487-491]. The presence of this pathway would explain the reported low efficiency of oxidative phosphorylation in S. cerevisiae, and may represent one of the postulated energy-dissipating mechanisms present in these yeasts. In this paper we demonstrate that ATP exerts its action in two steps: first, at low ATP/Pi ratios, it increases the respiratory-chain activity, probably by altering the kinetic properties of cytochrome c oxidase. Second, at higher ATP/Pi ratios, an increase in membrane permeability leads to a collapse in membrane potential. The ATP effect on cytochrome c oxidase corroborates a recent report showing that ATP interacts specifically with yeast cytochrome oxidase, stimulating its activity [Taanman and Capaldi (1993) J. Biol. Chem. 268, 18754-18761].
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arechaga I., Raimbault S., Prieto S., Levi-Meyrueis C., Zaragoza P., Miroux B., Ricquier D., Bouillaud F., Rial E. Cysteine residues are not essential for uncoupling protein function. Biochem J. 1993 Dec 15;296(Pt 3):693–700. doi: 10.1042/bj2960693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balcavage W. X., Mattoon J. R. Properties of Saccharomyces cerevisiae mitochondria prepared by a mechanical method. Biochim Biophys Acta. 1968 Apr 2;153(3):521–530. doi: 10.1016/0005-2728(68)90182-5. [DOI] [PubMed] [Google Scholar]
- Beauvoit B., Rigoulet M., Bunoust O., Raffard G., Canioni P., Guérin B. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Eur J Biochem. 1993 May 15;214(1):163–172. doi: 10.1111/j.1432-1033.1993.tb17909.x. [DOI] [PubMed] [Google Scholar]
- Bisson R., Schiavo G., Montecucco C. ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site. J Biol Chem. 1987 May 5;262(13):5992–5998. [PubMed] [Google Scholar]
- Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
- Fitton V., Rigoulet M., Ouhabi R., Guérin B. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Biochemistry. 1994 Aug 16;33(32):9692–9698. doi: 10.1021/bi00198a039. [DOI] [PubMed] [Google Scholar]
- Guérin B., Bunoust O., Rouqueys V., Rigoulet M. ATP-induced unspecific channel in yeast mitochondria. J Biol Chem. 1994 Oct 14;269(41):25406–25410. [PubMed] [Google Scholar]
- Guérin B., Labbe P., Somlo M. Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol. 1979;55:149–159. doi: 10.1016/0076-6879(79)55021-6. [DOI] [PubMed] [Google Scholar]
- Hüther F. J., Kadenbach B. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome-c oxidase. FEBS Lett. 1986 Oct 20;207(1):89–94. doi: 10.1016/0014-5793(86)80018-7. [DOI] [PubMed] [Google Scholar]
- Lagunas R. Energy metabolism of Saccharomyces cerevisiae discrepancy between ATP balance and known metabolic functions. Biochim Biophys Acta. 1976 Sep 13;440(3):661–674. doi: 10.1016/0005-2728(76)90049-9. [DOI] [PubMed] [Google Scholar]
- Lagunas R., Gancedo C. Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur J Biochem. 1983 Dec 15;137(3):479–483. doi: 10.1111/j.1432-1033.1983.tb07851.x. [DOI] [PubMed] [Google Scholar]
- Manon S., Guerin M. Modifications of oxidative phosphorylations in mitochondria isolated from a mutant of Saccharomyces cerevisiae. Possible alterations of the phosphate transport. Eur J Biochem. 1988 Feb 15;172(1):205–211. doi: 10.1111/j.1432-1033.1988.tb13874.x. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Kawaguchi K., Hagihara B. Preparation and some properties of yeast mitochondria. J Biol Chem. 1966 Apr 25;241(8):1797–1806. [PubMed] [Google Scholar]
- Onishi T. Induction of the site I phosphorylation in vivo in Saccharomyces carlsbergensis. Biochem Biophys Res Commun. 1970 Oct 23;41(2):344–352. doi: 10.1016/0006-291x(70)90510-3. [DOI] [PubMed] [Google Scholar]
- Prieto S., Bouillaud F., Ricquier D., Rial E. Activation by ATP of a proton-conducting pathway in yeast mitochondria. Eur J Biochem. 1992 Sep 1;208(2):487–491. doi: 10.1111/j.1432-1033.1992.tb17212.x. [DOI] [PubMed] [Google Scholar]
- Rigoulet M., Guerin B., Denis M. Modification of flow-force relationships by external ATP in yeast mitochondria. Eur J Biochem. 1987 Oct 15;168(2):275–279. doi: 10.1111/j.1432-1033.1987.tb13417.x. [DOI] [PubMed] [Google Scholar]
- Rothman L. B., Cabib E. Regulation of glycogen synthesis in the intact yeast cell. Biochemistry. 1969 Aug;8(8):3332–3341. doi: 10.1021/bi00836a030. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
- Taanman J. W., Capaldi R. A. Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. Isolation and characterization of the nuclear-coded gene. J Biol Chem. 1993 Sep 5;268(25):18754–18761. [PubMed] [Google Scholar]
- Velours J., Rigoulet M., Guerin B. Protection of yeast mitochondrial structure by phosphate and other H+-donating anions. FEBS Lett. 1977 Sep 1;81(1):18–22. doi: 10.1016/0014-5793(77)80918-6. [DOI] [PubMed] [Google Scholar]
