Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 1;307(Pt 3):759–768. doi: 10.1042/bj3070759

Proteoglycan production by human glomerular visceral epithelial cells and mesangial cells in vitro.

N F van Det 1, J van den Born 1, J T Tamsma 1, N A Verhagen 1, L P van den Heuvel 1, J H Berden 1, J A Bruijn 1, M R Daha 1, F J van der Woude 1
PMCID: PMC1136715  PMID: 7537959

Abstract

Proteoglycans metabolically labelled with [35S]sulphate and [3H]glucosamine or [3H]leucine were isolated from the incubation medium and cell layer of human adult mesangial cells and glomerular visceral epithelial cells using sequential DEAE chromatography purification steps followed by gel-filtration chromatography. The proteoglycan composition of each peak was analysed by treatment with HNO2, chondroitinase ABC or chondroitinase AC followed by chromatography on Sephadex G-50 columns. Heparan sulphate proteoglycan (HSPG) and dermatan sulphate proteoglycan were detected in both the culture medium and cell layer of mesangial cells. Culture medium of glomerular visceral epithelial cells contained HSPG and a second proteoglycan with the properties of a hybrid molecule containing HS and chondroitin sulphate (CS). The cell layer contained HSPG and CSPG. Detailed analysis of the hybrid molecule revealed that it had an apparent molecular mass of 400 kDa. SDS/PAGE of hybrid molecules, after treatment with heparitinase and chondroitinase ABC, revealed a core protein of 80 kDa. Using 1.8% polyacrylamide/0.6% agarose-gel electrophoresis, we deduced that the HS and CS were independently attached to one core protein. Because glomerular-basement-membrane HSPG is thought to be derived from mesangial cells and glomerular visceral epithelial cells and this molecule is involved in several kidney diseases, we investigated its synthesis in more detail. Anti-(rat glomerular-basement-membrane HSPG) monoclonal antibodies (JM403) and anti-(human glomerular-basement-membrane HSPG) polyclonal antibodies (both antibodies known to react with the large basement-membrane HSPG, perlecan) reacted strongly with HSPG obtained from both mesangial cells and glomerular visceral epithelial cells. However, the hybrid molecule did not react with these antibodies, suggesting that the HS side chain and the core protein were different from glomerular-basement-membrane HSPG. To quantify HS we performed an inhibition ELISA using mouse antibodies specific for glomerular-basement-membrane HS glycosaminoglycan side chains. Glomerular visceral epithelial cells produced significantly higher levels of HS (between 197.56 and 269.40 micrograms/72 h per 10(6) cells) than mesangial cells (between 29.8 and 45.5 micrograms/72 h per 10(6) cells) (three different cell lines; n = 3; P < 0.001). HS production by these cells was inhibited by cycloheximide, revealing that it was synthesized de novo. Expression of perlecan mRNA, demonstrated using reverse transcriptase PCR, was different in the two cell types. We conclude that glomerular visceral epithelial cells and mesangial cells have characteristic patterns of proteoglycan production. Glomerular visceral epithelial cells produced a hybrid proteoglycan containing CS and HS independently attached to its core protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
759

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baier G., Telford D., Gulbins E., Yamada N., Kawakami T., Altman A. Improved specificity of RT-PCR amplifications using nested cDNA primers. Nucleic Acids Res. 1993 Mar 11;21(5):1329–1330. doi: 10.1093/nar/21.5.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  3. Bertolatus J. A., Hunsicker L. G. Polycation binding to glomerular basement membrane. Effect of biochemical modification. Lab Invest. 1987 Feb;56(2):170–179. [PubMed] [Google Scholar]
  4. Brown D. M., Michael A. F., Oegema T. R. Glycosaminoglycan synthesis by glomeruli in vivo and in vitro. Biochim Biophys Acta. 1981 Apr 17;674(1):96–104. doi: 10.1016/0304-4165(81)90351-2. [DOI] [PubMed] [Google Scholar]
  5. Carney S. L., Bayliss M. T., Collier J. M., Muir H. Electrophoresis of 35S-labeled proteoglycans on polyacrylamide-agarose composite gels and their visualization by fluorography. Anal Biochem. 1986 Jul;156(1):38–44. doi: 10.1016/0003-2697(86)90150-8. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Comper W. D., Lee A. S., Tay M., Adal Y. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem J. 1993 Feb 1;289(Pt 3):647–652. doi: 10.1042/bj2890647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danielson K. G., Martinez-Hernandez A., Hassell J. R., Iozzo R. V. Establishment of a cell line from the EHS tumor: biosynthesis of basement membrane constituents and characterization of a hybrid proteoglycan containing heparan and chondroitin sulfate chains. Matrix. 1992 Feb;12(1):22–35. doi: 10.1016/s0934-8832(11)80101-0. [DOI] [PubMed] [Google Scholar]
  9. Gambaro G., Cavazzana A. O., Luzi P., Piccoli A., Borsatti A., Crepaldi G., Marchi E., Venturini A. P., Baggio B. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int. 1992 Aug;42(2):285–291. doi: 10.1038/ki.1992.288. [DOI] [PubMed] [Google Scholar]
  10. Groggel G. C., Stevenson J., Hovingh P., Linker A., Border W. A. Changes in heparan sulfate correlate with increased glomerular permeability. Kidney Int. 1988 Feb;33(2):517–523. doi: 10.1038/ki.1988.28. [DOI] [PubMed] [Google Scholar]
  11. Isemura M., Sato N., Yamaguchi Y., Aikawa J., Munakata H., Hayashi N., Yosizawa Z., Nakamura T., Kubota A., Arakawa M. Isolation and characterization of fibronectin-binding proteoglycan carrying both heparan sulfate and dermatan sulfate chains from human placenta. J Biol Chem. 1987 Jun 25;262(18):8926–8933. [PubMed] [Google Scholar]
  12. Johansson C., Butkowski R., Wieslander J. Characterization of monoclonal antibodies to the globular domain of collagen IV. Connect Tissue Res. 1991;25(3-4):229–241. doi: 10.3109/03008209109029159. [DOI] [PubMed] [Google Scholar]
  13. Kallunki P., Tryggvason K. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol. 1992 Jan;116(2):559–571. doi: 10.1083/jcb.116.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanwar Y. S., Jakubowski M. L., Rosenzweig L. J. Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Eur J Cell Biol. 1983 Sep;31(2):290–295. [PubMed] [Google Scholar]
  15. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanwar Y. S., Rosenzweig L. J., Jakubowski M. L. Distribution of de novo synthesized sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Lab Invest. 1983 Aug;49(2):216–225. [PubMed] [Google Scholar]
  17. Kato M., Koike Y., Ito Y., Suzuki S., Kimata K. Multiple forms of heparan sulfate proteoglycans in the Engelbreth-Holm-Swarm mouse tumor. The occurrence of high density forms bearing both heparan sulfate and chondroitin sulfate side chains. J Biol Chem. 1987 May 25;262(15):7180–7188. [PubMed] [Google Scholar]
  18. Kerjaschki D., Sharkey D. J., Farquhar M. G. Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 1984 Apr;98(4):1591–1596. doi: 10.1083/jcb.98.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klein D. J., Brown D. M., Kim Y., Oegema T. R., Jr Proteoglycans synthesized by human glomerular mesangial cells in culture. J Biol Chem. 1990 Jun 5;265(16):9533–9543. [PubMed] [Google Scholar]
  20. Klein D. J., Oegema T. R., Jr, Fredeen T. S., van der Woude F., Kim Y., Brown D. M. Partial characterization of proteoglycans synthesized by human glomerular epithelial cells in culture. Arch Biochem Biophys. 1990 Mar;277(2):389–401. doi: 10.1016/0003-9861(90)90595-p. [DOI] [PubMed] [Google Scholar]
  21. Kobayashi S., Oguri K., Yaoita E., Kobayashi K., Okayama M. Highly sulfated proteochondroitin sulfates synthesized in vitro by rat glomeruli. Biochim Biophys Acta. 1985 Jul 26;841(1):71–80. doi: 10.1016/0304-4165(85)90275-2. [DOI] [PubMed] [Google Scholar]
  22. Lindblom A., Carlstedt I., Fransson L. A. Identification of the core proteins in proteoglycans synthesized by vascular endothelial cells. Biochem J. 1989 Jul 1;261(1):145–153. doi: 10.1042/bj2610145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moran A., Brown D. M., Kim Y., Klein D. J. Effects of IGF-I and glucose on protein and proteoglycan synthesis by human fetal mesangial cells in culture. Diabetes. 1991 Oct;40(10):1346–1354. doi: 10.2337/diab.40.10.1346. [DOI] [PubMed] [Google Scholar]
  24. Muller E. W., Kim Y., Michael A. F., Vernier R. L., van der Hem G. K., van der Woude F. J. Explantation of mesangial cell 'hillocks': a method for obtaining human mesangial cells in culture. Int J Exp Pathol. 1992 Feb;73(1):9–20. [PMC free article] [PubMed] [Google Scholar]
  25. Müller G. A., Müller C. Characterisation of renal antigens on distinct parts of the human nephron by monoclonal antibodies. Klin Wochenschr. 1983 Sep 15;61(18):893–902. doi: 10.1007/BF01537529. [DOI] [PubMed] [Google Scholar]
  26. Okada K., Kawakami K., Miyao M., Oite T. Ultrastructural alterations of glomerular anionic sites in idiopathic membranous glomerulonephritis. Clin Nephrol. 1986 Jul;26(1):7–14. [PubMed] [Google Scholar]
  27. Poole A. R. Proteoglycans in health and disease: structures and functions. Biochem J. 1986 May 15;236(1):1–14. doi: 10.1042/bj2360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rapraeger A., Jalkanen M., Endo E., Koda J., Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985 Sep 15;260(20):11046–11052. [PubMed] [Google Scholar]
  29. Robinson G. B., Walton H. A. Glomerular basement membrane as a compressible ultrafilter. Microvasc Res. 1989 Jul;38(1):36–48. doi: 10.1016/0026-2862(89)90015-0. [DOI] [PubMed] [Google Scholar]
  30. Rosenzweig L. J., Kanwar Y. S. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Invest. 1982 Aug;47(2):177–184. [PubMed] [Google Scholar]
  31. Striker G. E., Striker L. J. Glomerular cell culture. Lab Invest. 1985 Aug;53(2):122–131. [PubMed] [Google Scholar]
  32. Tamsma J. T., van den Born J., Bruijn J. A., Assmann K. J., Weening J. J., Berden J. H., Wieslander J., Schrama E., Hermans J., Veerkamp J. H. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia. 1994 Mar;37(3):313–320. doi: 10.1007/BF00398060. [DOI] [PubMed] [Google Scholar]
  33. Thomas G. J., Mason R. M., Davies M. Characterization of proteoglycans synthesized by human adult glomerular mesangial cells in culture. Biochem J. 1991 Jul 1;277(Pt 1):81–88. doi: 10.1042/bj2770081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vernier R. L., Klein D. J., Sisson S. P., Mahan J. D., Oegema T. R., Brown D. M. Heparan sulfate--rich anionic sites in the human glomerular basement membrane. Decreased concentration in congenital nephrotic syndrome. N Engl J Med. 1983 Oct 27;309(17):1001–1009. doi: 10.1056/NEJM198310273091701. [DOI] [PubMed] [Google Scholar]
  36. Zamparo O., Comper W. D. Model anionic polysaccharide matrices exhibit lower charge selectivity than is normally associated with kidney ultrafiltration. Biophys Chem. 1990 Oct;38(1-2):167–178. doi: 10.1016/0301-4622(90)80052-9. [DOI] [PubMed] [Google Scholar]
  37. van den Born J., van den Heuvel L. P., Bakker M. A., Veerkamp J. H., Assmann K. J., Berden J. H. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int. 1992 Jan;41(1):115–123. doi: 10.1038/ki.1992.15. [DOI] [PubMed] [Google Scholar]
  38. van den Born J., van den Heuvel L. P., Bakker M. A., Veerkamp J. H., Assmann K. J., Weening J. J., Berden J. H. Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int. 1993 Feb;43(2):454–463. doi: 10.1038/ki.1993.67. [DOI] [PubMed] [Google Scholar]
  39. van den Heuvel L. P., van den Born J., van de Velden T. J., Veerkamp J. H., Monnens L. A., Schroder C. H., Berden J. H. Isolation and partial characterization of heparan sulphate proteoglycan from the human glomerular basement membrane. Biochem J. 1989 Dec 1;264(2):457–465. doi: 10.1042/bj2640457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van der Woude F. J., Michael A. F., Muller E., van der Hem G. K., Vernier R. L., Kim Y. Lymphohaemopoietic antigens of cultured human glomerular epithelial cells. Br J Exp Pathol. 1989 Feb;70(1):73–82. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES