Abstract
Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing mutation yet reported in type II procollagen.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- Bogaert R., Tiller G. E., Weis M. A., Gruber H. E., Rimoin D. L., Cohn D. H., Eyre D. R. An amino acid substitution (Gly853-->Glu) in the collagen alpha 1(II) chain produces hypochondrogenesis. J Biol Chem. 1992 Nov 5;267(31):22522–22526. [PubMed] [Google Scholar]
- Bonaventure J., Kadhom N., Cohen-Solal L., Ng K. H., Bourguignon J., Lasselin C., Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994 May;212(1):97–104. doi: 10.1006/excr.1994.1123. [DOI] [PubMed] [Google Scholar]
- Bonaventure J., de La Tour B., Tsagris L., Eddie L. W., Tregear G., Corvol M. T. Effect of relaxin on the phenotype of collagens synthesized by cultured rabbit chondrocytes. Biochim Biophys Acta. 1988 Nov 18;972(2):209–220. doi: 10.1016/0167-4889(88)90119-x. [DOI] [PubMed] [Google Scholar]
- Borochowitz Z., Ornoy A., Lachman R., Rimoin D. L. Achondrogenesis II-hypochondrogenesis: variability versus heterogeneity. Am J Med Genet. 1986 Jun;24(2):273–288. doi: 10.1002/ajmg.1320240208. [DOI] [PubMed] [Google Scholar]
- Bruckner P., Prockop D. J. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem. 1981 Jan 15;110(2):360–368. doi: 10.1016/0003-2697(81)90204-9. [DOI] [PubMed] [Google Scholar]
- Byers P. H., Wallis G. A., Willing M. C. Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet. 1991 Jul;28(7):433–442. doi: 10.1136/jmg.28.7.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan D., Cole W. G. Low basal transcription of genes for tissue-specific collagens by fibroblasts and lymphoblastoid cells. Application to the characterization of a glycine 997 to serine substitution in alpha 1(II) collagen chains of a patient with spondyloepiphyseal dysplasia. J Biol Chem. 1991 Jul 5;266(19):12487–12494. [PubMed] [Google Scholar]
- Chan D., Taylor T. K., Cole W. G. Characterization of an arginine 789 to cysteine substitution in alpha 1 (II) collagen chains of a patient with spondyloepiphyseal dysplasia. J Biol Chem. 1993 Jul 15;268(20):15238–15245. [PubMed] [Google Scholar]
- Eyre D. R., Upton M. P., Shapiro F. D., Wilkinson R. H., Vawter G. F. Nonexpression of cartilage type II collagen in a case of Langer-Saldino achondrogenesis. Am J Hum Genet. 1986 Jul;39(1):52–67. [PMC free article] [PubMed] [Google Scholar]
- Feshchenko S. P., Rebrin I. A., Sokolnik V. P., Sher B. M., Sokolov B. P., Kalinin V. N., Lazjuk G. I. The absence of type II collagen and changes in proteoglycan structure of hyaline cartilage in a case of Langer-Saldino achondrogenesis. Hum Genet. 1989 Apr;82(1):49–54. doi: 10.1007/BF00288271. [DOI] [PubMed] [Google Scholar]
- Freisinger P., Ala-Kokko L., LeGuellec D., Franc S., Bouvier R., Ritvaniemi P., Prockop D. J., Bonaventure J. Mutation in the COL2A1 gene in a patient with hypochondrogenesis. Expression of mutated COL2A1 gene is accompanied by expression of genes for type I procollagen in chondrocytes. J Biol Chem. 1994 May 6;269(18):13663–13669. [PubMed] [Google Scholar]
- Freisinger P., Stanescu V., Jacob B., Cohen-Solal L., Maroteaux P., Bonaventure J. Achondrogenesis type IB (Fraccaro): study of collagen in the tissue and in chondrocytes cultured in agarose. Am J Med Genet. 1994 Feb 15;49(4):439–446. doi: 10.1002/ajmg.1320490418. [DOI] [PubMed] [Google Scholar]
- Godfrey M., Hollister D. W. Type II achondrogenesis-hypochondrogenesis: identification of abnormal type II collagen. Am J Hum Genet. 1988 Dec;43(6):904–913. [PMC free article] [PubMed] [Google Scholar]
- Godfrey M., Keene D. R., Blank E., Hori H., Sakai L. Y., Sherwin L. A., Hollister D. W. Type II achondrogenesis-hypochondrogenesis: morphologic and immunohistopathologic studies. Am J Hum Genet. 1988 Dec;43(6):894–903. [PMC free article] [PubMed] [Google Scholar]
- Horton W. A., Machado M. A., Ellard J., Campbell D., Bartley J., Ramirez F., Vitale E., Lee B. Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4583–4587. doi: 10.1073/pnas.89.10.4583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häuselmann H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis S. H., Thonar E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr;12(2):116–129. doi: 10.1016/s0934-8832(11)80053-3. [DOI] [PubMed] [Google Scholar]
- Katz E. P., David C. W. Energetics of intrachain salt-linkage formation in collagen. Biopolymers. 1990 Mar-Apr;29(4-5):791–798. doi: 10.1002/bip.360290413. [DOI] [PubMed] [Google Scholar]
- Kuivaniemi H., Tromp G., Prockop D. J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991 Apr;5(7):2052–2060. doi: 10.1096/fasebj.5.7.2010058. [DOI] [PubMed] [Google Scholar]
- Körkkö J., Ritvaniemi P., Haataja L., Käriäinen H., Kivirikko K. I., Prockop D. J., Ala-Kokko L. Mutation in type II procollagen (COL2A1) that substitutes aspartate for glycine alpha 1-67 and that causes cataracts and retinal detachment: evidence for molecular heterogeneity in the Wagner syndrome and the Stickler syndrome (arthro-ophthalmopathy) Am J Hum Genet. 1993 Jul;53(1):55–61. [PMC free article] [PubMed] [Google Scholar]
- Maroteaux P., Stanescu V., Stanescu R. Hypochondrogenesis. Eur J Pediatr. 1983 Oct;141(1):14–22. doi: 10.1007/BF00445662. [DOI] [PubMed] [Google Scholar]
- Neville D. M., Jr, Glossmann H. Molecular weight determination of membrane protein and glycoprotein subunits by discontinuous gel electrophoresis in dodecyl sulfate. Methods Enzymol. 1974;32:92–102. doi: 10.1016/0076-6879(74)32012-5. [DOI] [PubMed] [Google Scholar]
- Ritvaniemi P., Hyland J., Ignatius J., Kivirikko K. I., Prockop D. J., Ala-Kokko L. A fourth example suggests that premature termination codons in the COL2A1 gene are a common cause of the Stickler syndrome: analysis of the COL2A1 gene by denaturing gradient gel electrophoresis. Genomics. 1993 Jul;17(1):218–221. doi: 10.1006/geno.1993.1306. [DOI] [PubMed] [Google Scholar]
- STEGEMANN H. Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dimethylaminobenzaldehyd. Hoppe Seylers Z Physiol Chem. 1958;311(1-3):41–45. [PubMed] [Google Scholar]
- Sieron A. L., Fertala A., Ala-Kokko L., Prockop D. J. Deletion of a large domain in recombinant human procollagen II does not alter the thermal stability of the triple helix. J Biol Chem. 1993 Oct 5;268(28):21232–21237. [PubMed] [Google Scholar]
- Spranger J. Pattern recognition in bone dysplasias. Prog Clin Biol Res. 1985;200:315–342. [PubMed] [Google Scholar]
- Tiller G. E., Rimoin D. L., Murray L. W., Cohn D. H. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci U S A. 1990 May;87(10):3889–3893. doi: 10.1073/pnas.87.10.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vikkula M., Ritvaniemi P., Vuorio A. F., Kaitila I., Ala-Kokko L., Peltonen L. A mutation in the amino-terminal end of the triple helix of type II collagen causing severe osteochondrodysplasia. Genomics. 1993 Apr;16(1):282–285. doi: 10.1006/geno.1993.1179. [DOI] [PubMed] [Google Scholar]
- Vissing H., D'Alessio M., Lee B., Ramirez F., Godfrey M., Hollister D. W. Glycine to serine substitution in the triple helical domain of pro-alpha 1 (II) collagen results in a lethal perinatal form of short-limbed dwarfism. J Biol Chem. 1989 Nov 5;264(31):18265–18267. [PubMed] [Google Scholar]
- Winterpacht A., Hilbert M., Schwarze U., Mundlos S., Spranger J., Zabel B. U. Kniest and Stickler dysplasia phenotypes caused by collagen type II gene (COL2A1) defect. Nat Genet. 1993 Apr;3(4):323–326. doi: 10.1038/ng0493-323. [DOI] [PubMed] [Google Scholar]










