Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 1;307(Pt 1):225–231. doi: 10.1042/bj3070225

Proteins binding to the leader of the 6.0 kb mRNA of human insulin-like growth factor 2 influence translation.

C H de Moor 1, M Jansen 1, E J Bonte 1, A A Thomas 1, J S Sussenbach 1, J L Van Den Brande 1
PMCID: PMC1136766  PMID: 7717979

Abstract

The leader of the 6.0 kb human insulin-like growth factor 2 (IGF-2) mRNA, leader 3, has been reported to partially repress translation. In the regulation of this phenomenon, RNA-binding proteins may play a role. Using UV-irradiation crosslinking, we found specific binding of four proteins (57, 43, 37 and 36 kDa) to this leader. Binding of these proteins to RNA proved to be highly sensitive to the potassium chloride concentration in the buffer solution, each protein having its own optimum. The 57 kDa protein was indistinguishable by size, binding properties and immunoprecipitation from the polypyrimidine tract binding protein (PTB), first described as a nuclear protein binding to the polypyrimidine tracts (PPTs) in introns. Cross-competition experiments showed that leader 3 has a much higher affinity for this 57 kDa protein than the PPT on which PTB was originally characterized. By competition with different fragments of leader 3, we were able to localize the binding of the 57 kDa protein to a 162 nt RNA fragment (AsnI-PvuII) in the 3'-part of the leader. When placed before a chloramphenicol acetyltransferase (CAT) open reading frame, this RNA fragment stimulated translation in reticulocyte lysate 3-fold, while other fragments of leader 3 repressed translation. The efficient translation directed by the 162 nt AsnI-PvuII fragment fused to CAT could be repressed by adding free AsnI-PvuII RNA fragment, indicating that the high translation efficiency of the AsnI-PvuII-CAT synthetic mRNA was due to the binding of protein and not to the structure of the RNA itself.

Full text

PDF
225

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berben-Bloemheuvel G., Kasperaitis M. A., van Heugten H., Thomas A. A., van Steeg H., Voorma H. O. Interaction of initiation factors with the cap structure of chimaeric mRNA containing the 5'-untranslated regions of Semliki Forest virus RNA is related to translational efficiency. Eur J Biochem. 1992 Sep 15;208(3):581–587. doi: 10.1111/j.1432-1033.1992.tb17222.x. [DOI] [PubMed] [Google Scholar]
  2. Borovjagin A. V., Ezrokhi M. V., Rostapshov V. M., Ugarova TYu, Bystrova T. F., Shatsky I. N. RNA--protein interactions within the internal translation initiation region of encephalomyocarditis virus RNA. Nucleic Acids Res. 1991 Sep 25;19(18):4999–5005. doi: 10.1093/nar/19.18.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Moor C. H., Jansen M., Sussenbach J. S., Van den Brande J. L. Differential polysomal localization of human insulin-like-growth-factor-2 mRNAs in cell lines and foetal liver. Eur J Biochem. 1994 Jun 15;222(3):1017–1024. doi: 10.1111/j.1432-1033.1994.tb18953.x. [DOI] [PubMed] [Google Scholar]
  4. García-Blanco M. A., Jamison S. F., Sharp P. A. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 1989 Dec;3(12A):1874–1886. doi: 10.1101/gad.3.12a.1874. [DOI] [PubMed] [Google Scholar]
  5. Ghetti A., Piñol-Roma S., Michael W. M., Morandi C., Dreyfuss G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992 Jul 25;20(14):3671–3678. doi: 10.1093/nar/20.14.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gil A., Sharp P. A., Jamison S. F., Garcia-Blanco M. A. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 1991 Jul;5(7):1224–1236. doi: 10.1101/gad.5.7.1224. [DOI] [PubMed] [Google Scholar]
  7. Hellen C. U., Witherell G. W., Schmid M., Shin S. H., Pestova T. V., Gil A., Wimmer E. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7642–7646. doi: 10.1073/pnas.90.16.7642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hershey J. W. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  9. Jang S. K., Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 1990 Sep;4(9):1560–1572. doi: 10.1101/gad.4.9.1560. [DOI] [PubMed] [Google Scholar]
  10. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  11. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Luz N., Beck E. Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. J Virol. 1991 Dec;65(12):6486–6494. doi: 10.1128/jvi.65.12.6486-6494.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McBratney S., Chen C. Y., Sarnow P. Internal initiation of translation. Curr Opin Cell Biol. 1993 Dec;5(6):961–965. doi: 10.1016/0955-0674(93)90077-4. [DOI] [PubMed] [Google Scholar]
  16. Melefors O., Hentze M. W. Translational regulation by mRNA/protein interactions in eukaryotic cells: ferritin and beyond. Bioessays. 1993 Feb;15(2):85–90. doi: 10.1002/bies.950150203. [DOI] [PubMed] [Google Scholar]
  17. Morris D. R., Kakegawa T., Kaspar R. L., White M. W. Polypyrimidine tracts and their binding proteins: regulatory sites for posttranscriptional modulation of gene expression. Biochemistry. 1993 Mar 30;32(12):2931–2937. doi: 10.1021/bi00063a001. [DOI] [PubMed] [Google Scholar]
  18. Nielsen F. C., Gammeltoft S., Christiansen J. Translational discrimination of mRNAs coding for human insulin-like growth factor II. J Biol Chem. 1990 Aug 15;265(23):13431–13434. [PubMed] [Google Scholar]
  19. Ohlsson R., Holmgren L., Glaser A., Szpecht A., Pfeifer-Ohlsson S. Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J. 1989 Jul;8(7):1993–1999. doi: 10.1002/j.1460-2075.1989.tb03606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patton J. G., Mayer S. A., Tempst P., Nadal-Ginard B. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 1991 Jul;5(7):1237–1251. doi: 10.1101/gad.5.7.1237. [DOI] [PubMed] [Google Scholar]
  21. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  22. Pestova T. V., Hellen C. U., Wimmer E. Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5' nontranslated region and involvement of a cellular 57-kilodalton protein. J Virol. 1991 Nov;65(11):6194–6204. doi: 10.1128/jvi.65.11.6194-6204.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rao C. D., Pech M., Robbins K. C., Aaronson S. A. The 5' untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol Cell Biol. 1988 Jan;8(1):284–292. doi: 10.1128/mcb.8.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ratner L., Thielan B., Collins T. Sequences of the 5' portion of the human c-sis gene: characterization of the transcriptional promoter and regulation of expression of the protein product by 5' untranslated mRNA sequences. Nucleic Acids Res. 1987 Aug 11;15(15):6017–6036. doi: 10.1093/nar/15.15.6017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  26. Scheper G. C., Thomas A. A., Voorma H. O. The 5' untranslated region of encephalomyocarditis virus contains a sequence for very efficient binding of eukaryotic initiation factor eIF-2/2B. Biochim Biophys Acta. 1991 Jun 13;1089(2):220–226. doi: 10.1016/0167-4781(91)90011-a. [DOI] [PubMed] [Google Scholar]
  27. Schneid H., Seurin D., Noguiez P., Le Bouc Y. Abnormalities of insulin-like growth factor (IGF-I and IGF-II) genes in human tumor tissue. Growth Regul. 1992 Mar;2(1):45–54. [PubMed] [Google Scholar]
  28. Sussenbach J. S., Steenbergh P. H., Holthuizen P. Structure and expression of the human insulin-like growth factor genes. Growth Regul. 1992 Mar;2(1):1–9. [PubMed] [Google Scholar]
  29. del Angel R. M., Papavassiliou A. G., Fernández-Tomás C., Silverstein S. J., Racaniello V. R. Cell proteins bind to multiple sites within the 5' untranslated region of poliovirus RNA. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8299–8303. doi: 10.1073/pnas.86.21.8299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES