Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 1;307(Pt 1):245–252. doi: 10.1042/bj3070245

Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum.

M W Lark 1, H Williams 1, L A Hoernner 1, J Weidner 1, J M Ayala 1, C F Harper 1, A Christen 1, J Olszewski 1, Z Konteatis 1, R Webber 1, et al.
PMCID: PMC1136769  PMID: 7717983

Abstract

Several members of the matrix metalloproteinase family have been reported to cleave aggrecan in the interglobular domain between Asn-341 and Phe-342. An antiserum was prepared against a peptide conjugate corresponding to the C-terminal sequence of the matrix metalloproteinase-generated aggrecan G1 fragment (Phe335-Val-Asp-Ile-Pro-Glu-Asn341). A quantitative radioimmunoassay, with a limit of detection of about 80 pM, was developed using this antiserum. This antiserum requires the free carboxyl group of the C-terminal asparagine for optimal recognition. If the C-terminal asparagine is excised from the sequence, replaced with closely related amino acids, or extended across the matrix metalloproteinase cleavage site, there is a 40-10,000-fold loss in detection. Using peptides cleaved from the N-terminus, it was determined that the antiserum requires the entire Phe-Val-Asp-Ile-Pro-Glu-Asn sequence for optimal recognition. The radioimmunoassay detects matrix metalloproteinase-generated G1 fragments with similar sensitivity to the Phe-Val-Asp-Ile-Pro-Glu-Asn peptide, but it does not recognize intact aggrecan. Immunoreactive aggrecan G1 fragments of molecular mass 50 kDa are generated by the matrix metalloproteinases stromelysin and gelatinase A. In contrast, under identical conditions, the closely related metalloproteinases, gelatinase B and collagenase, as well as cathepsin G, cathepsin B and human leucocyte elastase, did not generate a G1 fragment recognized by the antiserum. The anti-Phe-Val-Asp-Ile-Pro-Glu-Asn serum detects stromelysin-generated aggrecan G1 fragments from mouse, guinea pig, rabbit and human, indicating that the detection is not species-specific. This antiserum and radio-immunoassay should be useful for quantifying and characterizing matrix metalloproteinase-generated aggrecan G1 fragments in articular cartilage and synovial fluids from humans and various animal models of articular-cartilage destruction.

Full text

PDF
245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry F. P., Gaw J. U., Young C. N., Neame P. J. Hyaluronan-binding region of aggrecan from pig laryngeal cartilage. Amino acid sequence, analysis of N-linked oligosaccharides and location of the keratan sulphate. Biochem J. 1992 Sep 15;286(Pt 3):761–769. doi: 10.1042/bj2860761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Case J. P., Sano H., Lafyatis R., Remmers E. F., Kumkumian G. K., Wilder R. L. Transin/stromelysin expression in the synovium of rats with experimental erosive arthritis. In situ localization and kinetics of expression of the transformation-associated metalloproteinase in euthymic and athymic Lewis rats. J Clin Invest. 1989 Dec;84(6):1731–1740. doi: 10.1172/JCI114356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  4. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  5. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  6. Flannery C. R., Lark M. W., Sandy J. D. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem. 1992 Jan 15;267(2):1008–1014. [PubMed] [Google Scholar]
  7. Fosang A. J., Last K., Knäuper V., Neame P. J., Murphy G., Hardingham T. E., Tschesche H., Hamilton J. A. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J. 1993 Oct 1;295(Pt 1):273–276. doi: 10.1042/bj2950273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fosang A. J., Neame P. J., Hardingham T. E., Murphy G., Hamilton J. A. Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins. J Biol Chem. 1991 Aug 25;266(24):15579–15582. [PubMed] [Google Scholar]
  9. Fosang A. J., Neame P. J., Last K., Hardingham T. E., Murphy G., Hamilton J. A. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem. 1992 Sep 25;267(27):19470–19474. [PubMed] [Google Scholar]
  10. Harrison R., Teahan J., Stein R. A semicontinuous, high-performance liquid chromatography-based assay for stromelysin. Anal Biochem. 1989 Jul;180(1):110–113. doi: 10.1016/0003-2697(89)90096-1. [DOI] [PubMed] [Google Scholar]
  11. Hascall V. C., Kimura J. H. Proteoglycans: isolation and characterization. Methods Enzymol. 1982;82(Pt A):769–800. doi: 10.1016/0076-6879(82)82102-2. [DOI] [PubMed] [Google Scholar]
  12. Hasty K. A., Reife R. A., Kang A. H., Stuart J. M. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 1990 Mar;33(3):388–397. doi: 10.1002/art.1780330312. [DOI] [PubMed] [Google Scholar]
  13. Hughes C. E., Caterson B., White R. J., Roughley P. J., Mort J. S. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J Biol Chem. 1992 Aug 15;267(23):16011–16014. [PubMed] [Google Scholar]
  14. Kikuchi H., Imajoh-Ohmi S., Kanegasaki S. Novel antibodies specific for proteolyzed forms of protein kinase C: production of anti-peptide antibodies available for in situ analysis of intracellular limited proteolysis. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):171–176. doi: 10.1016/0167-4838(93)90144-g. [DOI] [PubMed] [Google Scholar]
  15. Kitagawa T., Aikawa T. Enzyme coupled immunoassay of insulin using a novel coupling reagent. J Biochem. 1976 Jan;79(1):233–236. doi: 10.1093/oxfordjournals.jbchem.a131053. [DOI] [PubMed] [Google Scholar]
  16. Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
  17. Lohmander L. S., Hoerrner L. A., Lark M. W. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993 Feb;36(2):181–189. doi: 10.1002/art.1780360207. [DOI] [PubMed] [Google Scholar]
  18. McDonnell J., Hoerrner L. A., Lark M. W., Harper C., Dey T., Lobner J., Eiermann G., Kazazis D., Singer I. I., Moore V. L. Recombinant human interleukin-1 beta-induced increase in levels of proteoglycans, stromelysin, and leukocytes in rabbit synovial fluid. Arthritis Rheum. 1992 Jul;35(7):799–805. doi: 10.1002/art.1780350714. [DOI] [PubMed] [Google Scholar]
  19. Mok M. T., Ilic M. Z., Handley C. J., Robinson H. C. Cleavage of proteoglycan aggregate by leucocyte elastase. Arch Biochem Biophys. 1992 Feb 1;292(2):442–447. doi: 10.1016/0003-9861(92)90014-n. [DOI] [PubMed] [Google Scholar]
  20. Murphy G., Cockett M. I., Ward R. V., Docherty A. J. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 1991 Jul 1;277(Pt 1):277–279. doi: 10.1042/bj2770277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nguyen Q., Murphy G., Roughley P. J., Mort J. S. Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochem J. 1989 Apr 1;259(1):61–67. doi: 10.1042/bj2590061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scaman C. H., Palcic M. M., McPhalen C., Gore M. P., Lam L. K., Vederas J. C. Inhibition of cytoplasmic aspartate aminotransferase from porcine heart by R and S isomers of aminooxysuccinate and hydrazinosuccinate. J Biol Chem. 1991 Mar 25;266(9):5525–5533. [PubMed] [Google Scholar]
  23. Teahan J., Harrison R., Izquierdo M., Stein R. L. Substrate specificity of human fibroblast stromelysin. Hydrolysis of substance P and its analogues. Biochemistry. 1989 Oct 17;28(21):8497–8501. doi: 10.1021/bi00447a034. [DOI] [PubMed] [Google Scholar]
  24. Walakovits L. A., Moore V. L., Bhardwaj N., Gallick G. S., Lark M. W. Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury. Arthritis Rheum. 1992 Jan;35(1):35–42. doi: 10.1002/art.1780350106. [DOI] [PubMed] [Google Scholar]
  25. Wolfe G. C., MacNaul K. L., Buechel F. F., McDonnell J., Hoerrner L. A., Lark M. W., Moore V. L., Hutchinson N. I. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 1993 Nov;36(11):1540–1547. doi: 10.1002/art.1780361108. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES