Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Apr 1;307(Pt 1):305–311. doi: 10.1042/bj3070305

The binding of natural and fluorescent lysophospholipids to wild-type and mutant rat liver fatty acid-binding protein and albumin.

A E Thumser 1, D C Wilton 1
PMCID: PMC1136777  PMID: 7717990

Abstract

Rat liver fatty acid-binding protein (FABP) is able to bind a wide range of non-polar anionic ligands, including lysophospholipids. In order to understand the nature of lysophospholipid interactions with liver FABP, the binding of natural lysophospholipids and two fluorescent analogues, N-(5-dimethylaminonaphthalenesulphonyl)-1-palmitoyl-sn-glycero-3- phosphoethanolamine (dansyl lysoPE) and 1-(O-[11-(5-dimethylaminonaphthalene-sulphonyl)amino]undecyl)-sn-glycero -3- phosphocholine (dansyl-C11-lysoPAF), has been investigated. The results confirmed the ability of liver FABP to bind lysophospholipids with KD values in the range of 1-2 microM, and a 1:1 binding stoichiometry was indicated. Binding of fluorescent lysophospholipids was enhanced with the FABP mutant, R122Q, possibly due to increased flexibility of the binding cavity as a result of reduced hydrogen-bonding constraints. The fluorescent lysophospholipids also bound to albumin, with KD values in the range 0.1-1.0 microM, and could be displaced by oleic acid. The fluorescence characteristics of the dansyl lysophospholipid analogue dansyl-C11-lyso-PAF suggested that this probe binds to the same site(s) on albumin as the fluorescent fatty acid probe 11-(5-dimethylaminonaphthalene-sulphonylamino)-undecanoic acid (DAUDA).

Full text

PDF
305

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Brown S. D., Baker B. L., Bell J. D. Quantification of the interaction of lysolecithin with phosphatidylcholine vesicles using bovine serum albumin: relevance to the activation of phospholipase A2. Biochim Biophys Acta. 1993 May 20;1168(1):13–22. doi: 10.1016/0005-2760(93)90260-g. [DOI] [PubMed] [Google Scholar]
  3. Burrier R. E., Brecher P. Binding of lysophosphatidylcholine to the rat liver fatty acid binding protein. Biochim Biophys Acta. 1986 Nov 14;879(2):229–239. doi: 10.1016/0005-2760(86)90107-4. [DOI] [PubMed] [Google Scholar]
  4. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  5. Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
  6. Cistola D. P., Walsh M. T., Corey R. P., Hamilton J. A., Brecher P. Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. Biochemistry. 1988 Jan 26;27(2):711–717. doi: 10.1021/bi00402a033. [DOI] [PubMed] [Google Scholar]
  7. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  8. Durieux M. E., Lynch K. R. Signalling properties of lysophosphatidic acid. Trends Pharmacol Sci. 1993 Jun;14(6):249–254. doi: 10.1016/0165-6147(93)90021-b. [DOI] [PubMed] [Google Scholar]
  9. Eads J., Sacchettini J. C., Kromminga A., Gordon J. I. Escherichia coli-derived rat intestinal fatty acid binding protein with bound myristate at 1.5 A resolution and I-FABPArg106-->Gln with bound oleate at 1.74 A resolution. J Biol Chem. 1993 Dec 15;268(35):26375–26385. [PubMed] [Google Scholar]
  10. Edwards F. B., Rombauer R. B., Campbell B. J. Thiol-disulfide interchange reactions between serum albumin and disulfides. Biochim Biophys Acta. 1969 Nov 11;194(1):234–245. doi: 10.1016/0005-2795(69)90199-8. [DOI] [PubMed] [Google Scholar]
  11. Farren S. B., Cullis P. R. Polymorphism of phosphatidylglycerol-phosphatidylethanolamine model membrane systems: a 31p NMR study. Biochem Biophys Res Commun. 1980 Nov 17;97(1):182–191. doi: 10.1016/s0006-291x(80)80152-5. [DOI] [PubMed] [Google Scholar]
  12. Glatz J. F., Veerkamp J. H. A radiochemical procedure for the assay of fatty acid binding by proteins. Anal Biochem. 1983 Jul 1;132(1):89–95. doi: 10.1016/0003-2697(83)90429-3. [DOI] [PubMed] [Google Scholar]
  13. Janatova J., Fuller J. K., Hunter M. J. The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. J Biol Chem. 1968 Jul 10;243(13):3612–3622. [PubMed] [Google Scholar]
  14. Kaikaus R. M., Bass N. M., Ockner R. K. Functions of fatty acid binding proteins. Experientia. 1990 Jun 15;46(6):617–630. doi: 10.1007/BF01939701. [DOI] [PubMed] [Google Scholar]
  15. Kinkaid A. R., Wilton D. C. A continuous fluorescence displacement assay for phospholipase A2 using albumin and medium chain phospholipid substrates. Anal Biochem. 1993 Jul;212(1):65–70. doi: 10.1006/abio.1993.1292. [DOI] [PubMed] [Google Scholar]
  16. Klopfenstein W. E. Enthalpy change of binding lysolecithin to serum albumin. Biochim Biophys Acta. 1969 May;181(1):323–325. doi: 10.1016/0005-2795(69)90256-6. [DOI] [PubMed] [Google Scholar]
  17. Klopfenstein W. E. Thermodynamics of binding lysolecithin to serum albumin. Biochim Biophys Acta. 1969;187(2):272–274. doi: 10.1016/0005-2760(69)90038-1. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Liu Z. P., Rizo J., Gierasch L. M. Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly beta-sheet protein. Biochemistry. 1994 Jan 11;33(1):134–142. doi: 10.1021/bi00167a017. [DOI] [PubMed] [Google Scholar]
  20. Lowe J. B., Sacchettini J. C., Laposata M., McQuillan J. J., Gordon J. I. Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem. 1987 Apr 25;262(12):5931–5937. [PubMed] [Google Scholar]
  21. Moolenaar W. H., van der Bend R. L., van Corven E. J., Jalink K., Eichholtz T., van Blitterswijk W. J. Lysophosphatidic acid: a novel phospholipid with hormone- and growth factor-like activities. Cold Spring Harb Symp Quant Biol. 1992;57:163–167. doi: 10.1101/sqb.1992.057.01.021. [DOI] [PubMed] [Google Scholar]
  22. Nemecz G., Jefferson J. R., Schroeder F. Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J Biol Chem. 1991 Sep 15;266(26):17112–17123. [PubMed] [Google Scholar]
  23. Peeters R. A., in 't Groen M. A., de Moel M. P., van Moerkerk H. T., Veerkamp J. H. The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem. 1989;21(4):407–418. doi: 10.1016/0020-711x(89)90365-0. [DOI] [PubMed] [Google Scholar]
  24. Prakobphol A., Leffler H., Fisher S. J. Specific adherence of Candida tropicalis to lysophospholipids. Biochemistry. 1994 Aug 16;33(32):9496–9503. doi: 10.1021/bi00198a015. [DOI] [PubMed] [Google Scholar]
  25. Sacchettini J. C., Gordon J. I., Banaszak L. J. Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol. 1989 Jul 20;208(2):327–339. doi: 10.1016/0022-2836(89)90392-6. [DOI] [PubMed] [Google Scholar]
  26. Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
  27. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  28. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thumser A. E., Evans C., Worrall A. F., Wilton D. C. Effect on ligand binding of arginine mutations in recombinant rat liver fatty acid-binding protein. Biochem J. 1994 Jan 1;297(Pt 1):103–107. doi: 10.1042/bj2970103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thumser A. E., Voysey J. E., Wilton D. C. The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin. Biochem J. 1994 Aug 1;301(Pt 3):801–806. doi: 10.1042/bj3010801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thumser A. E., Wilton D. C. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants. Biochem J. 1994 Jun 15;300(Pt 3):827–833. doi: 10.1042/bj3000827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tilcock C. P., Cullis P. R. The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Biochim Biophys Acta. 1981 Feb 20;641(1):189–201. doi: 10.1016/0005-2736(81)90583-6. [DOI] [PubMed] [Google Scholar]
  33. Vancura A., Haldar D. Regulation of mitochondrial and microsomal phospholipid synthesis by liver fatty acid-binding protein. J Biol Chem. 1992 Jul 15;267(20):14353–14359. [PubMed] [Google Scholar]
  34. Veerkamp J. H., Peeters R. A., Maatman R. G. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):1–24. doi: 10.1016/0005-2760(91)90244-c. [DOI] [PubMed] [Google Scholar]
  35. Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
  36. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue. Biochem J. 1986 Sep 1;238(2):419–424. doi: 10.1042/bj2380419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilton D. C. The fatty acid analogue 11-(dansylamino)undecanoic acid is a fluorescent probe for the bilirubin-binding sites of albumin and not for the high-affinity fatty acid-binding sites. Biochem J. 1990 Aug 15;270(1):163–166. doi: 10.1042/bj2700163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Worrall A. F., Evans C., Wilton D. C. Synthesis of a gene for rat liver fatty-acid-binding protein and its expression in Escherichia coli. Biochem J. 1991 Sep 1;278(Pt 2):365–368. doi: 10.1042/bj2780365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES