Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 15;308(Pt 3):749–752. doi: 10.1042/bj3080749

Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

I Martin 1, M Giralt 1, O Viñas 1, R Iglesias 1, T Mampel 1, F Villarroya 1
PMCID: PMC1136788  PMID: 8948428

Abstract

The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis.

Full text

PDF
749

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battini R., Ferrari S., Kaczmarek L., Calabretta B., Chen S. T., Baserga R. Molecular cloning of a cDNA for a human ADP/ATP carrier which is growth-regulated. J Biol Chem. 1987 Mar 25;262(9):4355–4359. [PubMed] [Google Scholar]
  2. Bouillaud F., Ricquier D., Thibault J., Weissenbach J. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc Natl Acad Sci U S A. 1985 Jan;82(2):445–448. doi: 10.1073/pnas.82.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannon B., Lindberg O. Mitochondria from brown adipose tissue: isolation and properties. Methods Enzymol. 1979;55:65–78. doi: 10.1016/0076-6879(79)55010-1. [DOI] [PubMed] [Google Scholar]
  4. Castora F. J., Arnheim N., Simpson M. V. Mitochondrial DNA polymorphism: evidence that variants detected by restriction enzymes differ in nucleotide sequence rather than in methylation. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6415–6419. doi: 10.1073/pnas.77.11.6415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton D. A. Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem Sci. 1991 Mar;16(3):107–111. doi: 10.1016/0968-0004(91)90043-u. [DOI] [PubMed] [Google Scholar]
  6. Desautels M., Himms-Hagen J. Parallel regression of cold-induced changes in ultrastructure, composition, and properties of brown adipose tissue mitochondria during recovery of rats from acclimation to cold. Can J Biochem. 1980 Oct;58(10):1057–1068. doi: 10.1139/o80-143. [DOI] [PubMed] [Google Scholar]
  7. Desautels M. Mitochondrial thermogenin content is unchanged during atrophy of BAT of fasting mice. Am J Physiol. 1985 Jul;249(1 Pt 1):E99–106. doi: 10.1152/ajpendo.1985.249.1.E99. [DOI] [PubMed] [Google Scholar]
  8. Enerbäck S., Semb H., Bengtsson-Olivecrona G., Carlsson P., Hermansson M. L., Olivecrona T., Bjursell G. Molecular cloning and sequence analysis of cDNA encoding lipoprotein lipase of guinea pig. Gene. 1987;58(1):1–12. doi: 10.1016/0378-1119(87)90023-0. [DOI] [PubMed] [Google Scholar]
  9. Giralt M., Martin I., Vilaró S., Villarroya F., Mampel T., Iglesias R., Viñas O. Lipoprotein lipase mRNA expression in brown adipose tissue: translational and/or posttranslational events are involved in the modulation of enzyme activity. Biochim Biophys Acta. 1990 Apr 6;1048(2-3):270–273. doi: 10.1016/0167-4781(90)90066-b. [DOI] [PubMed] [Google Scholar]
  10. Giralt M., Villarroya F., Mampel T., Iglesias R. Impaired basal and noradrenaline-induced iodothyronine 5'-deiodinase activity in brown adipose tissue from pregnant and lactating rats. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1315–1321. doi: 10.1016/s0006-291x(86)80426-0. [DOI] [PubMed] [Google Scholar]
  11. Glaichenhaus N., Léopold P., Cuzin F. Increased levels of mitochondrial gene expression in rat fibroblast cells immortalized or transformed by viral and cellular oncogenes. EMBO J. 1986 Jun;5(6):1261–1265. doi: 10.1002/j.1460-2075.1986.tb04355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hevner R. F., Wong-Riley M. T. Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons. J Neurosci. 1993 May;13(5):1805–1819. doi: 10.1523/JNEUROSCI.13-05-01805.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houstek J., Tvrdík P., Pavelka S., Baudysová M. Low content of mitochondrial ATPase in brown adipose tissue is the result of post-transcriptional regulation. FEBS Lett. 1991 Dec 9;294(3):191–194. doi: 10.1016/0014-5793(91)80666-q. [DOI] [PubMed] [Google Scholar]
  14. Isler D., Trayhurn P., Lunn P. G. Brown adipose tissue metabolism in lactating rats: the effect of litter size. Ann Nutr Metab. 1984;28(2):101–109. doi: 10.1159/000176789. [DOI] [PubMed] [Google Scholar]
  15. Izquierdo J. M., Luis A. M., Cuezva J. M. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990 Jun 5;265(16):9090–9097. [PubMed] [Google Scholar]
  16. Kadowaki T., Kitagawa Y. Enhanced transcription of mitochondrial genes after growth stimulation and glucocorticoid treatment of Reuber hepatoma H-35. FEBS Lett. 1988 Jun 6;233(1):51–56. doi: 10.1016/0014-5793(88)81354-1. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lomedico P. T., Saunders G. F. Preparation of pancreatic mRNA: cell-free translation of an insulin-immunoreactive polypeptide. Nucleic Acids Res. 1976 Feb;3(2):381–391. doi: 10.1093/nar/3.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luciakova K., Nelson B. D. Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur J Biochem. 1992 Jul 1;207(1):247–251. doi: 10.1111/j.1432-1033.1992.tb17044.x. [DOI] [PubMed] [Google Scholar]
  20. Martin I., Giralt M., Viñas O., Iglesias R., Mampel T., Villarroya F. Adaptative decrease in expression of the mRNA for uncoupling protein and subunit II of cytochrome c oxidase in rat brown adipose tissue during pregnancy and lactation. Biochem J. 1989 Nov 1;263(3):965–968. doi: 10.1042/bj2630965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin I., Viñas O., Mampel T., Iglesias R., Villarroya F. Effects of cold environment on mitochondrial genome expression in the rat: evidence for a tissue-specific increase in the liver, independent of changes in mitochondrial gene abundance. Biochem J. 1993 Nov 15;296(Pt 1):231–234. doi: 10.1042/bj2960231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mory G., Bouillaud F., Combes-George M., Ricquier D. Noradrenaline controls the concentration of the uncoupling protein in brown adipose tissue. FEBS Lett. 1984 Jan 30;166(2):393–396. doi: 10.1016/0014-5793(84)80120-9. [DOI] [PubMed] [Google Scholar]
  23. Mutvei A., Kuzela S., Nelson B. D. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem. 1989 Mar 1;180(1):235–240. doi: 10.1111/j.1432-1033.1989.tb14638.x. [DOI] [PubMed] [Google Scholar]
  24. Nagley P. Coordination of gene expression in the formation of mammalian mitochondria. Trends Genet. 1991 Jan;7(1):1–4. doi: 10.1016/0168-9525(91)90002-8. [DOI] [PubMed] [Google Scholar]
  25. Nelson B. D. Thyroid hormone regulation of mitochondrial function. Comments on the mechanism of signal transduction. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):275–277. doi: 10.1016/0005-2728(90)90266-7. [DOI] [PubMed] [Google Scholar]
  26. Powell S. J., Medd S. M., Runswick M. J., Walker J. E. Two bovine genes for mitochondrial ADP/ATP translocase expressed differences in various tissues. Biochemistry. 1989 Jan 24;28(2):866–873. doi: 10.1021/bi00428a069. [DOI] [PubMed] [Google Scholar]
  27. Ricquier D., Bouillaud F., Toumelin P., Mory G., Bazin R., Arch J., Pénicaud L. Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue. Evidence for a rapid beta-adrenoreceptor-mediated and transcriptionally regulated step during activation of thermogenesis. J Biol Chem. 1986 Oct 25;261(30):13905–13910. [PubMed] [Google Scholar]
  28. Silva J. E., Larsen P. R. Potential of brown adipose tissue type II thyroxine 5'-deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest. 1985 Dec;76(6):2296–2305. doi: 10.1172/JCI112239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trayhurn P., Douglas J. B., McGuckin M. M. Brown adipose tissue thermogenesis is 'suppressed' during lactation in mice. Nature. 1982 Jul 1;298(5869):59–60. doi: 10.1038/298059a0. [DOI] [PubMed] [Google Scholar]
  30. Trayhurn P., Jennings G. Functional atrophy of brown adipose tissue during lactation in mice. Effects of lactation and weaning on mitochondrial GDP binding and uncoupling protein. Biochem J. 1987 Nov 15;248(1):273–276. doi: 10.1042/bj2480273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trayhurn P., Wusteman M. C. Sympathetic activity in brown adipose tissue in lactating mice. Am J Physiol. 1987 Nov;253(5 Pt 1):E515–E520. doi: 10.1152/ajpendo.1987.253.5.E515. [DOI] [PubMed] [Google Scholar]
  32. Van Itallie C. M. Thyroid hormone and dexamethasone increase the levels of a messenger ribonucleic acid for a mitochondrially encoded subunit but not for a nuclear-encoded subunit of cytochrome c oxidase. Endocrinology. 1990 Jul;127(1):55–62. doi: 10.1210/endo-127-1-55. [DOI] [PubMed] [Google Scholar]
  33. Villarroya F., Felipe A., Mampel T. Brown adipose tissue activity in hypocaloric-diet fed lactating rats. Biosci Rep. 1986 Jul;6(7):669–675. doi: 10.1007/BF01114762. [DOI] [PubMed] [Google Scholar]
  34. Villarroya F., Felipe A., Mampel T. Reduced noradrenaline turnover in brown adipose tissue of lactating rats. Comp Biochem Physiol A Comp Physiol. 1987;86(3):481–483. doi: 10.1016/0300-9629(87)90529-9. [DOI] [PubMed] [Google Scholar]
  35. Villarroya F., Felipe A., Mampel T. Sequential changes in brown adipose tissue composition, cytochrome oxidase activity and GDP binding throughout pregnancy and lactation in the rat. Biochim Biophys Acta. 1986 Jun 19;882(2):187–191. doi: 10.1016/0304-4165(86)90154-6. [DOI] [PubMed] [Google Scholar]
  36. Villena J. A., Martin I., Viñas O., Cormand B., Iglesias R., Mampel T., Giralt M., Villarroya F. ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit. J Biol Chem. 1994 Dec 23;269(51):32649–32654. [PubMed] [Google Scholar]
  37. Virbasius C. A., Virbasius J. V., Scarpulla R. C. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 1993 Dec;7(12A):2431–2445. doi: 10.1101/gad.7.12a.2431. [DOI] [PubMed] [Google Scholar]
  38. Virbasius J. V., Scarpulla R. C. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene. Mol Cell Biol. 1991 Nov;11(11):5631–5638. doi: 10.1128/mcb.11.11.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Viñas O., Giralt M., Obregón M. J., Iglesias R., Villarroya F., Mampel T. Iodothyronine 5'-deiodinase activity and thyroid hormone content in brown adipose tissue during the breeding cycle of the rat. Biochem J. 1988 Oct 15;255(2):457–461. doi: 10.1042/bj2550457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]
  41. Wicks K. L., Hood D. A. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Am J Physiol. 1991 Apr;260(4 Pt 1):C841–C850. doi: 10.1152/ajpcell.1991.260.4.C841. [DOI] [PubMed] [Google Scholar]
  42. Wiesner R. J. Regulation of mitochondrial gene expression: transcription versus replication. Trends Genet. 1992 Aug;8(8):264–265. doi: 10.1016/0168-9525(92)90243-w. [DOI] [PubMed] [Google Scholar]
  43. Williams R. S. Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. J Biol Chem. 1986 Sep 15;261(26):12390–12394. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES