Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 15;308(Pt 3):777–783. doi: 10.1042/bj3080777

Inhibition of interleukin-2-mediated DNA synthesis in activated human T-lymphoblasts by okadaic acid is accompanied by hyperphosphorylation of lck.

Y Churcher 1, S E Moss 1
PMCID: PMC1136792  PMID: 8948432

Abstract

We have previously shown that, during interleukin-2-driven G1/S transition in activated human T-lymphoblasts, a restricted group of cellular proteins become tyrosine phosphorylated de novo, and that p56lck is the major active tyrosine kinase at this stage of the cell cycle. We now report that okadaic acid, a potent and specific inhibitor of protein phosphatases type 1 and type 2A, inhibits S-phase entry, and that this occurs with the simultaneous disappearance of a 56 kDa tyrosine phosphoprotein. We show that this protein is the lck tyrosine kinase and that okadaic acid stimulates a mobility shift to 59 and 64 kDa forms. These two forms of lck were found to have decreased autocatalytic activity, as judged by immune-complex kinase assays. Two-dimensional phosphopeptide mapping and phosphoamino-acid analyses revealed that, in the presence of okadaic acid, lck becomes phosphorylated mainly on serine and to a lesser extent threonine, and that phosphorylation occurs at novel sites. These results show that the kinase activity of lck is at least partly regulated by protein phosphatases, and suggest a role for lck in directing growth-factor-mediated DNA synthesis during T-cell proliferation.

Full text

PDF
777

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham N., Veillette A. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of autophosphorylation and myristylation. Mol Cell Biol. 1990 Oct;10(10):5197–5206. doi: 10.1128/mcb.10.10.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alessi D. R., Street A. J., Cohen P., Cohen P. T. Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. Eur J Biochem. 1993 May 1;213(3):1055–1066. doi: 10.1111/j.1432-1033.1993.tb17853.x. [DOI] [PubMed] [Google Scholar]
  3. Amaral M. C., Casillas A. M., Nel A. E. Contrasting effects of two tumour promoters, phorbol myristate acetate and okadaic acid, on T-cell responses and activation of p42 MAP-kinase/ERK-2. Immunology. 1993 May;79(1):24–31. [PMC free article] [PubMed] [Google Scholar]
  4. Amrein K. E., Sefton B. M. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4247–4251. doi: 10.1073/pnas.85.12.4247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barker H. M., Craig S. P., Spurr N. K., Cohen P. T. Sequence of human protein serine/threonine phosphatase 1 gamma and localization of the gene (PPP1CC) encoding it to chromosome bands 12q24.1-q24.2. Biochim Biophys Acta. 1993 Aug 18;1178(2):228–233. doi: 10.1016/0167-4889(93)90014-g. [DOI] [PubMed] [Google Scholar]
  6. Cantrell D. A., Smith K. A. The interleukin-2 T-cell system: a new cell growth model. Science. 1984 Jun 22;224(4655):1312–1316. doi: 10.1126/science.6427923. [DOI] [PubMed] [Google Scholar]
  7. Churcher Y., Moss S. E. Modulation of protein tyrosine phosphorylation during G1/S transition in activated human T-lymphoblasts. J Biol Chem. 1993 Dec 15;268(35):26144–26149. [PubMed] [Google Scholar]
  8. Clarke P. R., Hoffmann I., Draetta G., Karsenti E. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol Biol Cell. 1993 Apr;4(4):397–411. doi: 10.1091/mbc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  10. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  11. Ferrigno P., Langan T. A., Cohen P. Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol Biol Cell. 1993 Jul;4(7):669–677. doi: 10.1091/mbc.4.7.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Félix M. A., Cohen P., Karsenti E. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid. EMBO J. 1990 Mar;9(3):675–683. doi: 10.1002/j.1460-2075.1990.tb08159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatakeyama M., Kono T., Kobayashi N., Kawahara A., Levin S. D., Perlmutter R. M., Taniguchi T. Interaction of the IL-2 receptor with the src-family kinase p56lck: identification of novel intermolecular association. Science. 1991 Jun 14;252(5012):1523–1528. doi: 10.1126/science.2047859. [DOI] [PubMed] [Google Scholar]
  14. Horak I. D., Gress R. E., Lucas P. J., Horak E. M., Waldmann T. A., Bolen J. B. T-lymphocyte interleukin 2-dependent tyrosine protein kinase signal transduction involves the activation of p56lck. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1996–2000. doi: 10.1073/pnas.88.5.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishida Y., Furukawa Y., Decaprio J. A., Saito M., Griffin J. D. Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. J Cell Physiol. 1992 Mar;150(3):484–492. doi: 10.1002/jcp.1041500308. [DOI] [PubMed] [Google Scholar]
  16. Kim T. A., Velasquez B. R., Wenner C. E. Okadaic acid regulation of the retinoblastoma gene product is correlated with the inhibition of growth factor-induced cell proliferation in mouse fibroblasts. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5460–5463. doi: 10.1073/pnas.90.12.5460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luo K. X., Sefton B. M. Analysis of the sites in p56lck whose phosphorylation is induced by tetradecanoyl phorbol acetate. Oncogene. 1990 Jun;5(6):803–808. [PubMed] [Google Scholar]
  18. Marth J. D., Cooper J. A., King C. S., Ziegler S. F., Tinker D. A., Overell R. W., Krebs E. G., Perlmutter R. M. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol Cell Biol. 1988 Feb;8(2):540–550. doi: 10.1128/mcb.8.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray A. W. Cell biology: the cell cycle as a cdc2 cycle. Nature. 1989 Nov 2;342(6245):14–15. doi: 10.1038/342014a0. [DOI] [PubMed] [Google Scholar]
  20. Nada S., Okada M., MacAuley A., Cooper J. A., Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991 May 2;351(6321):69–72. doi: 10.1038/351069a0. [DOI] [PubMed] [Google Scholar]
  21. Pallas D. C., Shahrik L. K., Martin B. L., Jaspers S., Miller T. B., Brautigan D. L., Roberts T. M. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990 Jan 12;60(1):167–176. doi: 10.1016/0092-8674(90)90726-u. [DOI] [PubMed] [Google Scholar]
  22. Perlmutter R. M., Levin S. D., Appleby M. W., Anderson S. J., Alberola-Ila J. Regulation of lymphocyte function by protein phosphorylation. Annu Rev Immunol. 1993;11:451–499. doi: 10.1146/annurev.iy.11.040193.002315. [DOI] [PubMed] [Google Scholar]
  23. Richards F. M., Milner J., Metcalfe S. Inhibition of the serine/threonine protein phosphatases PP1 and PP2A in lymphocytes: effect on mRNA levels for interleukin-2, IL-2R alpha, krox-24, p53, hsc70 and cyclophilin. Immunology. 1992 Aug;76(4):642–647. [PMC free article] [PubMed] [Google Scholar]
  24. Sabe H., Kuno J., Koromilas A., Saito Y., Kinashi T., Ueda M., Takamatsu T., Hamaguchi M., Kawakami T., Honjo T. Comparison of protein tyrosine phosphorylation and morphological changes induced by IL-2 and IL-3. Int Immunol. 1991 Nov;3(11):1137–1148. doi: 10.1093/intimm/3.11.1137. [DOI] [PubMed] [Google Scholar]
  25. Sakai R., Ikeda I., Kitani H., Fujiki H., Takaku F., Rapp U., Sugimura T., Nagao M. Flat reversion by okadaic acid of raf and ret-II transformants. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9946–9950. doi: 10.1073/pnas.86.24.9946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sontag E., Fedorov S., Kamibayashi C., Robbins D., Cobb M., Mumby M. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell. 1993 Dec 3;75(5):887–897. doi: 10.1016/0092-8674(93)90533-v. [DOI] [PubMed] [Google Scholar]
  27. Soula M., Rothhut B., Camoin L., Guillaume J. L., Strosberg D., Vorherr T., Burn P., Meggio F., Fischer S., Fagard R. Anti-CD3 and phorbol ester induce distinct phosphorylated sites in the SH2 domain of p56lck. J Biol Chem. 1993 Dec 25;268(36):27420–27427. [PubMed] [Google Scholar]
  28. Veillette A., Dumont S., Fournel M. Conserved cysteine residues are critical for the enzymatic function of the lymphocyte-specific tyrosine protein kinase p56lck. J Biol Chem. 1993 Aug 15;268(23):17547–17553. [PubMed] [Google Scholar]
  29. Winkler D. G., Park I., Kim T., Payne N. S., Walsh C. T., Strominger J. L., Shin J. Phosphorylation of Ser-42 and Ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5176–5180. doi: 10.1073/pnas.90.11.5176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamashita K., Yasuda H., Pines J., Yasumoto K., Nishitani H., Ohtsubo M., Hunter T., Sugimura T., Nishimoto T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 1990 Dec;9(13):4331–4338. doi: 10.1002/j.1460-2075.1990.tb07882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES