Abstract
The presence of the heat shock protein (hsp-70) has been detected in exocytosed vesicles (which are named exosomes) from mammalian and avian immature red cells (i.e. reticulocytes) as well as from a differentiating avian erythroleukaemic cell line. The close, but non-covalent, association of hsp-70 with the transferrin receptor (TFR) in exosomes is demonstrated by: (1) the ability to cross-link hsp-70 to TFR; (2) the co-immunoprecipitation of hsp-70 and TFR with an antibody against TFR, and the co-immunoprecipitation of TFR and hsp-70 with antibody against hsp-70; and (3) the retention of TFR by hsp-70 bound to ATP-agarose and the simultaneous elution of both proteins by excess ATP. Semi-quantitative analysis of the relative efficiency of cross-linking of these proteins in exosomes versus plasma membranes shows that TFR in exosomes is preferentially bound to hsp-70. From an analysis of the relative amounts of hsp-70 and TFR regenerated from the cross-linked complex, the ratio of TFR monomer bound to hsp-70 is approximately 1.5 to 1. Given the presence of hsp-70 in exosomes from several species and its close association with TFR (the major protein lost during reticulocyte maturation) it is proposed that hsp-70 plays a role in exosome formation and/or release in immature red cells.
Full text
PDF![823](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/51b53a355c56/biochemj00061-0126.png)
![824](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/33d56dcd6dd8/biochemj00061-0127.png)
![825](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/f1300d32f121/biochemj00061-0128.png)
![826](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/e7bfc2b69a37/biochemj00061-0129.png)
![827](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/ee20c6d46b4b/biochemj00061-0130.png)
![828](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/bcc5fcf574d2/biochemj00061-0131.png)
![829](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/c9e0a53c3100/biochemj00061-0132.png)
![830](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/1136798/f7c73216bdd0/biochemj00061-0133.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam M. A., Johnstone R. M. Protein kinase C does not phosphorylate the externalized form of the transferrin receptor. Biochem J. 1987 Feb 15;242(1):151–161. doi: 10.1042/bj2420151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adam M., Wu C., Turbide C., Larrick J., Johnstone R. M. Evidence for a pool of non-recycling transferrin receptors in peripheral sheep reticulocytes. J Cell Physiol. 1986 Apr;127(1):8–16. doi: 10.1002/jcp.1041270103. [DOI] [PubMed] [Google Scholar]
- Ahn J., Johnstone R. M. Origin of a soluble truncated transferrin receptor. Blood. 1993 May 1;81(9):2442–2451. [PubMed] [Google Scholar]
- Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
- Benderoff S., Johnstone R. M., Blostein R. Electrogenic sodium-dependent glycine transport in sheep reticulocytes. Can J Biochem. 1978 Jun;56(6):545–551. doi: 10.1139/o78-083. [DOI] [PubMed] [Google Scholar]
- Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chappell T. G., Welch W. J., Schlossman D. M., Palter K. B., Schlesinger M. J., Rothman J. E. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell. 1986 Apr 11;45(1):3–13. doi: 10.1016/0092-8674(86)90532-5. [DOI] [PubMed] [Google Scholar]
- Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
- Davis J. Q., Bennett V. Human erythrocyte clathrin and clathrin-uncoating protein. J Biol Chem. 1985 Nov 25;260(27):14850–14856. [PubMed] [Google Scholar]
- Davis J. Q., Dansereau D., Johnstone R. M., Bennett V. Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation. J Biol Chem. 1986 Nov 25;261(33):15368–15371. [PubMed] [Google Scholar]
- Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
- Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
- Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
- Grdisa M., Mathew A., Johnstone R. M. Expression and loss of the transferrin receptor in growing and differentiating HD3 cells. J Cell Physiol. 1993 May;155(2):349–357. doi: 10.1002/jcp.1041550216. [DOI] [PubMed] [Google Scholar]
- Harding C., Heuser J., Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol. 1984 Nov;35(2):256–263. [PubMed] [Google Scholar]
- Johnstone R. M., Adam M., Hammond J. R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987 Jul 5;262(19):9412–9420. [PubMed] [Google Scholar]
- Johnstone R. M., Adam M., Turbide C., Larrick J. Phosphorylation of the transferrin receptor in isolated sheep reticulocyte plasma membranes. Can J Biochem Cell Biol. 1984 Sep;62(9):927–934. doi: 10.1139/o84-119. [DOI] [PubMed] [Google Scholar]
- Johnstone R. M., Bianchini A., Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989 Oct;74(5):1844–1851. [PubMed] [Google Scholar]
- Johnstone R. M., Mathew A., Mason A. B., Teng K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol. 1991 Apr;147(1):27–36. doi: 10.1002/jcp.1041470105. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
- Palleros D. R., Welch W. J., Fink A. L. Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5719–5723. doi: 10.1073/pnas.88.13.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan B. T., Blostein R., Johnstone R. M. Loss of the transferrin receptor during the maturation of sheep reticulocytes in vitro. An immunological approach. Biochem J. 1983 Jan 15;210(1):37–47. doi: 10.1042/bj2100037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan B. T., Johnstone R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983 Jul;33(3):967–978. doi: 10.1016/0092-8674(83)90040-5. [DOI] [PubMed] [Google Scholar]
- Pan B. T., Johnstone R. Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibitors of endocytosis. J Biol Chem. 1984 Aug 10;259(15):9776–9782. [PubMed] [Google Scholar]
- Pan B. T., Teng K., Wu C., Adam M., Johnstone R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985 Sep;101(3):942–948. doi: 10.1083/jcb.101.3.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger M. J. Heat shock proteins. J Biol Chem. 1990 Jul 25;265(21):12111–12114. [PubMed] [Google Scholar]
- Schlesinger M. J. Heat shock proteins: the search for functions. J Cell Biol. 1986 Aug;103(2):321–325. doi: 10.1083/jcb.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweizer E., Angst W., Lutz H. U. Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation. Biochemistry. 1982 Dec 21;21(26):6807–6818. doi: 10.1021/bi00269a029. [DOI] [PubMed] [Google Scholar]
- Smith D. F., Stensgard B. A., Welch W. J., Toft D. O. Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. J Biol Chem. 1992 Jan 15;267(2):1350–1356. [PubMed] [Google Scholar]
- Sullivan A. L., Grasso J. A., Weintraub L. R. Micropinocytosis of transferrin by developing red cells: an electron-microscopic study utilizing ferritin-conjugated transferrin and ferritin-conjugated antibodies to transferrin. Blood. 1976 Jan;47(1):133–143. [PubMed] [Google Scholar]
- Terlecky S. R., Chiang H. L., Olson T. S., Dice J. F. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J Biol Chem. 1992 May 5;267(13):9202–9209. [PubMed] [Google Scholar]
- Ungewickell E. The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J. 1985 Dec 16;4(13A):3385–3391. doi: 10.1002/j.1460-2075.1985.tb04094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidal M. J., Stahl P. D. The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur J Cell Biol. 1993 Apr;60(2):261–267. [PubMed] [Google Scholar]
- White S., Miller K., Hopkins C., Trowbridge I. S. Monoclonal antibodies against defined epitopes of the human transferrin receptor cytoplasmic tail. Biochim Biophys Acta. 1992 Jul 22;1136(1):28–34. doi: 10.1016/0167-4889(92)90081-l. [DOI] [PubMed] [Google Scholar]
- Yoshimori T., Shimonishi Y., Uchida T. Binding properties of monoclonal antibody to the cytoplasmic domain of transferrin receptor. Cell Struct Funct. 1988 Aug;13(4):311–324. doi: 10.1247/csf.13.311. [DOI] [PubMed] [Google Scholar]