Abstract
alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aduse-Opoku J., Tao L., Ferretti J. J., Russell R. R. Biochemical and genetic analysis of Streptococcus mutans alpha-galactosidase. J Gen Microbiol. 1991 Apr;137(4):757–764. doi: 10.1099/00221287-137-4-757. [DOI] [PubMed] [Google Scholar]
- Adya S., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus niger: purification and properties of alpha-glaactosidase. J Bacteriol. 1977 Feb;129(2):850–856. doi: 10.1128/jb.129.2.850-856.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahl O. P., Agrawal K. M. Glycosidases of Aspergillus niger. I. Purification and characterization of alpha- and beta-galactosidases and beta-N-acetylglucosaminidase. J Biol Chem. 1969 Jun 10;244(11):2970–2978. [PubMed] [Google Scholar]
- Bause E., Legler G. Isolation and amino acid sequence of a hexadecapeptide from the active site of beta-glucosidase A3 from Aspergillus wentii. Hoppe Seylers Z Physiol Chem. 1974 Apr;355(4):438–442. doi: 10.1515/bchm2.1974.355.1.438. [DOI] [PubMed] [Google Scholar]
- Biemann K. Mass spectrometry of peptides and proteins. Annu Rev Biochem. 1992;61:977–1010. doi: 10.1146/annurev.bi.61.070192.004553. [DOI] [PubMed] [Google Scholar]
- Bradshaw R. A., Kanarek L., Hill R. L. The preparation, properties, and reactivation of the mixed disulfide derivative of egg white lysozyme and L-cystine. J Biol Chem. 1967 Sep 10;242(17):3789–3798. [PubMed] [Google Scholar]
- De la Llosa P., El Abed A., Roy M. Oxidation of methionine residues in lutropin. Can J Biochem. 1980 Sep;58(9):745–748. doi: 10.1139/o80-105. [DOI] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Ellis W. D., Dunford H. B. The kinetics of cyanide and fluoride binding by ferric horseradish peroxidase. Biochemistry. 1968 Jun;7(6):2054–2062. doi: 10.1021/bi00846a006. [DOI] [PubMed] [Google Scholar]
- FLOYD N. F., CAMMAROTI M. S., LAVINE T. F. THE DECOMPOSITION OF DL-METHIONINE SULFOXIDE IN 6 N HYDROCHLORIC ACID. Arch Biochem Biophys. 1963 Sep;102:343–345. doi: 10.1016/0003-9861(63)90239-x. [DOI] [PubMed] [Google Scholar]
- Fowler A. V., Zabin I., Sinnott M. L., Zabin I. Methionine 500, the site of covalent attachment of an active site-directed reagent of beta-galactosidase. J Biol Chem. 1978 Aug 10;253(15):5283–5285. [PubMed] [Google Scholar]
- Geoghegan K. F., Dallas J. L., Feeney R. E. Periodate inactivation of ovotransferrin and human serum transferrin. J Biol Chem. 1980 Dec 10;255(23):11429–11434. [PubMed] [Google Scholar]
- Golubev A. M., Neustroev K. N. Crystallization of alpha-galactosidase from Trichoderma reesei. J Mol Biol. 1993 Jun 5;231(3):933–934. doi: 10.1006/jmbi.1993.1340. [DOI] [PubMed] [Google Scholar]
- HACHIMORI Y., HORINISHI H., KURIHARA K., SHIBATA K. STATES OF AMINO ACID RESIDUES IN PROTEINS. V. DIFFERENT REACTIVITIES WITH H2O2 OF TRYPTOPHAN RESIDUES IN LYSOZYME, PROTEINASES AND ZYMOGENS. Biochim Biophys Acta. 1964 Nov 8;93:346–346. doi: 10.1016/0304-4165(64)90385-x. [DOI] [PubMed] [Google Scholar]
- Haibach F., Hata J., Mitra M., Dhar M., Harmata M., Sun P., Smith D. Purification and characterization of a Coffea canephora alpha-D-galactosidase isozyme. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1564–1571. doi: 10.1016/0006-291x(91)92117-3. [DOI] [PubMed] [Google Scholar]
- Johnson D., Travis J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J Biol Chem. 1979 May 25;254(10):4022–4026. [PubMed] [Google Scholar]
- Kachurin A. M., Kropachev E. V., Iogannsen M. G., Petrov A. S. Osobennosti peroksidaznogo okisleniia amidopirina i ego analogov. Biokhimiia. 1991 Oct;56(10):1768–1778. [PubMed] [Google Scholar]
- Kanda T., Amano Y., Nisizawa K. Purification and properties of two endo-1,4-beta-xylanases from Irpex lacteus (Polyporus tulipiferae). J Biochem. 1985 Dec;98(6):1545–1554. doi: 10.1093/oxfordjournals.jbchem.a135423. [DOI] [PubMed] [Google Scholar]
- Keskar S. S., Rao M. B., Deshpande V. V. Characterization and sequencing of an active-site cysteine-containing peptide from the xylanase of a thermotolerant Streptomyces. Biochem J. 1992 Feb 1;281(Pt 3):601–605. doi: 10.1042/bj2810601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazo P. S., Ochoa A. G., Gascón S. alpha-Galactosidase from Saccharomyces carlsbergensis. Cellular localization, and purification of the external enzyme. Eur J Biochem. 1977 Jul 15;77(2):375–382. doi: 10.1111/j.1432-1033.1977.tb11677.x. [DOI] [PubMed] [Google Scholar]
- Little C., O'Brien P. J. Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1969 Oct;10(3):533–538. doi: 10.1111/j.1432-1033.1969.tb00721.x. [DOI] [PubMed] [Google Scholar]
- Lloyd J. B., Whelan W. J. An improved method for enzymic determination of glucose in the presence of maltose. Anal Biochem. 1969 Sep;30(3):467–470. doi: 10.1016/0003-2697(69)90143-2. [DOI] [PubMed] [Google Scholar]
- Nagao Y., Nakada T., Imoto M., Shimamoto T., Sakai S., Tsuda M., Tsuchiya T. Purification and analysis of the structure of alpha-galactosidase from Escherichia coli. Biochem Biophys Res Commun. 1988 Feb 29;151(1):236–241. doi: 10.1016/0006-291x(88)90584-0. [DOI] [PubMed] [Google Scholar]
- Neustroev K. N., Golubev A. M., Firsov L. M., Ibatullin F. M., Protasevich I. I., Makarov A. A. Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 1993 Jan 25;316(2):157–160. doi: 10.1016/0014-5793(93)81206-f. [DOI] [PubMed] [Google Scholar]
- Oku H., Hase S., Ikenaka T. Purification and characterization of neutral alpha-mannosidase that is activated by Co2+ from Japanese quail oviduct. J Biochem. 1991 Jul;110(1):29–34. doi: 10.1093/oxfordjournals.jbchem.a123538. [DOI] [PubMed] [Google Scholar]
- Quaroni A., Semenza G. Partial amino acid sequences around the essential carboxylate in the active sites of the intestinal sucrase-isomaltase complex. J Biol Chem. 1976 Jun 10;251(11):3250–3253. [PubMed] [Google Scholar]
- Reymann J. M., Rondeau J. M., Barth P., Jaquinod M., Van Dorsselaer A., Biellmann J. F. Purification and electrospray mass spectrometry of aldose reductase from pig lens. Biochim Biophys Acta. 1992 Jul 13;1122(1):1–5. doi: 10.1016/0167-4838(92)90119-x. [DOI] [PubMed] [Google Scholar]
- SANNER T., PIHL A. Studies on the active--SH group of papain and on the mechanism of papain activation by thiols. J Biol Chem. 1963 Jan;238:165–171. [PubMed] [Google Scholar]
- Smith D. J., Maggio E. T., Kenyon G. L. Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. Biochemistry. 1975 Feb 25;14(4):766–771. doi: 10.1021/bi00675a019. [DOI] [PubMed] [Google Scholar]
- Sumner-Smith M., Bozzato R. P., Skipper N., Davies R. W., Hopper J. E. Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product, alpha-galactosidase (melibiase). Gene. 1985;36(3):333–340. doi: 10.1016/0378-1119(85)90188-x. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Li S. C., Li Y. T. Alpha-galactosidase from Mortierella vinacea. Crystallization and properties. J Biol Chem. 1970 Feb 25;245(4):781–786. [PubMed] [Google Scholar]
- Tressel P., Kosman D. J. o,o-Dityrosine in native and horseradish peroxidase-activated galactose oxidase. Biochem Biophys Res Commun. 1980 Feb 12;92(3):781–786. doi: 10.1016/0006-291x(80)90771-8. [DOI] [PubMed] [Google Scholar]
- Yamasaki R. B., Osuga D. T., Feeney R. E. Periodate oxidation of methionine in proteins. Anal Biochem. 1982 Oct;126(1):183–189. doi: 10.1016/0003-2697(82)90127-0. [DOI] [PubMed] [Google Scholar]

