Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 15;308(Pt 3):965–973. doi: 10.1042/bj3080965

Regulation of neurite outgrowth from differentiated human neuroepithelial cells: a comparison of the activities of prothrombin and thrombin.

A S Turnell 1, D P Brant 1, G R Brown 1, M Finney 1, P H Gallimore 1, C J Kirk 1, T R Pagliuca 1, C J Campbell 1, R H Michell 1, R J Grand 1
PMCID: PMC1136817  PMID: 8948457

Abstract

The mechanism by which thrombin and prothrombin control neurite retraction was studied in Ad12E1HER10 human neuroepithelial cells. Morphological changes in differentiated cells were apparent within minutes of the addition of very low concentrations of thrombin (3 pM). Higher concentrations (2 nM) of prothrombin were required to elicit a similar response. Doses of thrombin and prothrombin sufficient to cause neurite retraction stimulated protein tyrosine kinase activity. Protein tyrosine kinase activation also correlated positively with thrombin- and prothrombin-induced phosphoinositide 3-kinase activation and InsP6 dephosphorylation. However, thrombin-stimulated Ins(1,4,5)P3 generation and intracellular Ca2+ mobilization only occurred at concentrations in excess of those needed to induce retraction. No fluctuations in Ins(1,4,5)P3 were detected after stimulation with prothrombin, and no rapid synchronized release of Ca2+ was observed, even at very high concentrations. Prothrombin did, however, cause small oscillations in the intracellular Ca2+ concentration, similar to those produced by low concentrations of thrombin, after approximately 30 min. We conclude that prothrombin- and thrombin-induced neurite retractions are not dependent on PtdIns(4,5)P2 and Ca2+ mobilization, but are more probably mediated through an effector mechanism involving protein tyrosine kinase activation. No intracellular Ca2+ mobilization, protein tyrosine kinase activity or neurite retraction was observed after treatment of cells with proteolytically inactive mutant thrombin (S205-->A). Prothrombin-mediated intracellular Ca2+ mobilization and neurite retraction were inhibited by hirudin, which was shown to interact with thrombin but not prothrombin. It is concluded that cleavage of prothrombin to thrombin is a necessary prerequisite for biological activity on differentiated Ad12E1HER10 cells and that differences in agonist concentration are capable of coupling the thrombin receptor to different pathways within the cell.

Full text

PDF
965

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Shavit R., Kahn A. J., Mann K. G., Wilner G. D. Growth-promoting effects of esterolytically inactive thrombin on macrophages. J Cell Biochem. 1986;32(4):261–272. doi: 10.1002/jcb.240320403. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Brass L. F., Manning D. R., Williams A. G., Woolkalis M. J., Poncz M. Receptor and G protein-mediated responses to thrombin in HEL cells. J Biol Chem. 1991 Jan 15;266(2):958–965. [PubMed] [Google Scholar]
  4. Bunce C. M., French P. J., Allen P., Mountford J. C., Moor B., Greaves M. F., Michell R. H., Brown G. Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem J. 1993 Feb 1;289(Pt 3):667–673. doi: 10.1042/bj2890667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrd P., Brown K. W., Gallimore P. H. Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature. 1982 Jul 1;298(5869):69–71. doi: 10.1038/298069a0. [DOI] [PubMed] [Google Scholar]
  6. Chen L. B., Buchanan J. M. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):131–135. doi: 10.1073/pnas.72.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen L. B., Teng N. N., Buchanan J. M. Mitogenicity of thrombin and surface alterations on mouse splenocytes. Exp Cell Res. 1976 Aug;101(1):41–46. doi: 10.1016/0014-4827(76)90409-2. [DOI] [PubMed] [Google Scholar]
  8. Dihanich M., Kaser M., Reinhard E., Cunningham D., Monard D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron. 1991 Apr;6(4):575–581. doi: 10.1016/0896-6273(91)90060-d. [DOI] [PubMed] [Google Scholar]
  9. End P., Gout I., Fry M. J., Panayotou G., Dhand R., Yonezawa K., Kasuga M., Waterfield M. D. A biosensor approach to probe the structure and function of the p85 alpha subunit of the phosphatidylinositol 3-kinase complex. J Biol Chem. 1993 May 15;268(14):10066–10075. [PubMed] [Google Scholar]
  10. Fenton J. W., 2nd Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988 Jul;14(3):234–240. doi: 10.1055/s-2007-1002783. [DOI] [PubMed] [Google Scholar]
  11. Garcia J. G., Siflinger-Birnboim A., Bizios R., Del Vecchio P. J., Fenton J. W., 2nd, Malik A. B. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol. 1986 Jul;128(1):96–104. doi: 10.1002/jcp.1041280115. [DOI] [PubMed] [Google Scholar]
  12. Golden A., Brugge J. S. Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc Natl Acad Sci U S A. 1989 Feb;86(3):901–905. doi: 10.1073/pnas.86.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grabham P. W., Grand R. J., Byrd P. J., Gallimore P. H. Differentiation of normal and adenovirus-12 E1 transformed human embryo retinal cells. Exp Eye Res. 1988 Jul;47(1):123–133. doi: 10.1016/0014-4835(88)90029-2. [DOI] [PubMed] [Google Scholar]
  14. Grabham P. W., Monard D., Gallimore P. H., Grand R. J. A. Modulation of Human Neurite Outgrowth by Serine Proteases: A Comparison of the Interaction of Thrombin and Prothrombin with Glia-Derived Nexin. Eur J Neurosci. 1991 Jul;3(7):663–668. doi: 10.1111/j.1460-9568.1991.tb00852.x. [DOI] [PubMed] [Google Scholar]
  15. Grand R. J., Grabham P. W., Gallimore M. J., Gallimore P. H. Modulation of morphological differentiation of human neuroepithelial cells by serine proteases: independence from blood coagulation. EMBO J. 1989 Aug;8(8):2209–2215. doi: 10.1002/j.1460-2075.1989.tb08344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guinebault C., Payrastre B., Sultan C., Mauco G., Breton M., Levy-Toledano S., Plantavid M., Chap H. Tyrosine kinases and phosphoinositide metabolism in thrombin-stimulated human platelets. Biochem J. 1993 Jun 15;292(Pt 3):851–856. doi: 10.1042/bj2920851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gurwitz D., Cunningham D. D. Neurite outgrowth activity of protease nexin-1 on neuroblastoma cells requires thrombin inhibition. J Cell Physiol. 1990 Jan;142(1):155–162. doi: 10.1002/jcp.1041420119. [DOI] [PubMed] [Google Scholar]
  18. Gurwitz D., Cunningham D. D. Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc Natl Acad Sci U S A. 1988 May;85(10):3440–3444. doi: 10.1073/pnas.85.10.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gustafson G. T., Lerner U. Thrombin, a stimulator of bone resorption. Biosci Rep. 1983 Mar;3(3):255–261. doi: 10.1007/BF01122457. [DOI] [PubMed] [Google Scholar]
  20. Hamilton K. K., Sims P. J. Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. Study of microcarrier cell monolayers using the fluorescent probe indo-1. J Clin Invest. 1987 Feb;79(2):600–608. doi: 10.1172/JCI112853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hawkins R. L., Seeds N. W. Effect of proteases and their inhibitors on neurite outgrowth from neonatal mouse sensory ganglia in culture. Brain Res. 1986 Nov 19;398(1):63–70. doi: 10.1016/0006-8993(86)91250-3. [DOI] [PubMed] [Google Scholar]
  22. Hawkins R. L., Seeds N. W. Protease inhibitors influence the direction of neurite outgrowth. Brain Res Dev Brain Res. 1989 Feb 1;45(2):203–209. doi: 10.1016/0165-3806(89)90039-4. [DOI] [PubMed] [Google Scholar]
  23. Hoffmann O., Klaushofer K., Koller K., Peterlik M., Mavreas T., Stern P. Indomethacin inhibits thrombin-, but not thyroxin-stimulated resorption of fetal rat limb bones. Prostaglandins. 1986 Apr;31(4):601–608. doi: 10.1016/0090-6980(86)90168-1. [DOI] [PubMed] [Google Scholar]
  24. Hughes P. J., Michell R. H. Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol. 1993 Jun;3(3):383–400. doi: 10.1016/0959-4388(93)90132-i. [DOI] [PubMed] [Google Scholar]
  25. Hung D. T., Wong Y. H., Vu T. K., Coughlin S. R. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem. 1992 Oct 15;267(29):20831–20834. [PubMed] [Google Scholar]
  26. Ishii K., Hein L., Kobilka B., Coughlin S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem. 1993 May 5;268(13):9780–9786. [PubMed] [Google Scholar]
  27. Jenkins A. L., Bootman M. D., Taylor C. W., Mackie E. J., Stone S. R. Characterization of the receptor responsible for thrombin-induced intracellular calcium responses in osteoblast-like cells. J Biol Chem. 1993 Oct 5;268(28):21432–21437. [PubMed] [Google Scholar]
  28. Joseph S., MacDermot J. The N-terminal thrombin receptor fragment SFLLRN, but not catalytically inactive thrombin-derived agonists, activate U937 human monocytic cells: evidence for receptor hydrolysis in thrombin-dependent signalling. Biochem J. 1993 Mar 1;290(Pt 2):571–577. doi: 10.1042/bj2900571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kucera G. L., Rittenhouse S. E. Human platelets form 3-phosphorylated phosphoinositides in response to alpha-thrombin, U46619, or GTP gamma S. J Biol Chem. 1990 Apr 5;265(10):5345–5348. [PubMed] [Google Scholar]
  30. Lapetina E. G. The signal transduction induced by thrombin in human platelets. FEBS Lett. 1990 Aug 1;268(2):400–404. doi: 10.1016/0014-5793(90)81293-w. [DOI] [PubMed] [Google Scholar]
  31. Meyer T., Holowka D., Stryer L. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science. 1988 Apr 29;240(4852):653–656. doi: 10.1126/science.2452482. [DOI] [PubMed] [Google Scholar]
  32. Monard D. Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci. 1988 Dec;11(12):541–544. doi: 10.1016/0166-2236(88)90182-8. [DOI] [PubMed] [Google Scholar]
  33. Monard D., Niday E., Limat A., Solomon F. Inhibition of protease activity can lead to neurite extension in neuroblastoma cells. Prog Brain Res. 1983;58:359–364. doi: 10.1016/S0079-6123(08)60037-0. [DOI] [PubMed] [Google Scholar]
  34. Nogimori K., Hughes P. J., Glennon M. C., Hodgson M. E., Putney J. W., Jr, Shears S. B. Purification of an inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase activity from rat liver and the evaluation of its substrate specificity. J Biol Chem. 1991 Sep 5;266(25):16499–16506. [PubMed] [Google Scholar]
  35. Oberdisse E., Nolan R. D., Lapetina E. G. Thrombin and phorbol ester stimulate inositol 1,3,4,5-tetrakisphosphate 3-phosphomonoesterase in human platelets. J Biol Chem. 1990 Jan 15;265(2):726–730. [PubMed] [Google Scholar]
  36. Offermanns S., Bombien E., Schultz G. Thrombin Ca(2+)-dependently stimulates protein tyrosine phosphorylation in BC3H1 muscle cells. Biochem J. 1993 Feb 15;290(Pt 1):27–32. doi: 10.1042/bj2900027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pumiglia K. M., Feinstein M. B. Thrombin and thrombin receptor agonist peptide induce tyrosine phosphorylation and tyrosine kinases in the platelet cytoskeleton. Translocation of pp60c-src and integrin alpha IIb beta 3 (glycoprotein IIb/IIIa) is not required for aggregation, but is dependent on formation of large aggregate structures. Biochem J. 1993 Aug 15;294(Pt 1):253–260. doi: 10.1042/bj2940253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rasmussen U. B., Gachet C., Schlesinger Y., Hanau D., Ohlmann P., Van Obberghen-Schilling E., Pouysségur J., Cazenave J. P., Pavirani A. A peptide ligand of the human thrombin receptor antagonizes alpha-thrombin and partially activates platelets. J Biol Chem. 1993 Jul 5;268(19):14322–14328. [PubMed] [Google Scholar]
  39. Sabo T., Gurwitz D., Motola L., Brodt P., Barak R., Elhanaty E. Structure-activity studies of the thrombin receptor activating peptide. Biochem Biophys Res Commun. 1992 Oct 30;188(2):604–610. doi: 10.1016/0006-291x(92)91099-c. [DOI] [PubMed] [Google Scholar]
  40. Saville M. K., Graham A., Malarkey K., Paterson A., Gould G. W., Plevin R. Regulation of endothelin-1- and lysophosphatidic acid-stimulated tyrosine phosphorylation of focal adhesion kinase (pp125fak) in Rat-1 fibroblasts. Biochem J. 1994 Jul 15;301(Pt 2):407–414. doi: 10.1042/bj3010407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scarborough R. M., Naughton M. A., Teng W., Hung D. T., Rose J., Vu T. K., Wheaton V. I., Turck C. W., Coughlin S. R. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992 Jul 5;267(19):13146–13149. [PubMed] [Google Scholar]
  42. Sekiya F., Usui H., Inoue K., Fukudome K., Morita T. Activation of prothrombin by a novel membrane-associated protease. An alternative pathway for thrombin generation independent of the coagulation cascade. J Biol Chem. 1994 Dec 23;269(51):32441–32445. [PubMed] [Google Scholar]
  43. Smith K. J., Trayer I. P., Grand R. J. Structure around the cleavage site in the thrombin receptor determined by NMR spectroscopy. Biochemistry. 1994 May 24;33(20):6063–6073. doi: 10.1021/bi00186a005. [DOI] [PubMed] [Google Scholar]
  44. Stephens L., Eguinoa A., Corey S., Jackson T., Hawkins P. T. Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J. 1993 Jun;12(6):2265–2273. doi: 10.1002/j.1460-2075.1993.tb05880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stiernberg J., Redin W. R., Warner W. S., Carney D. H. The role of thrombin and thrombin receptor activating peptide (TRAP-508) in initiation of tissue repair. Thromb Haemost. 1993 Jul 1;70(1):158–162. [PubMed] [Google Scholar]
  46. Suidan H. S., Stone S. R., Hemmings B. A., Monard D. Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors. Neuron. 1992 Feb;8(2):363–375. doi: 10.1016/0896-6273(92)90302-t. [DOI] [PubMed] [Google Scholar]
  47. Van Obberghen-Schilling E., Rasmussen U. B., Vouret-Craviari V., Lentes K. U., Pavirani A., Pouysségur J. Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides. Biochem J. 1993 Jun 15;292(Pt 3):667–671. doi: 10.1042/bj2920667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vassallo R. R., Jr, Kieber-Emmons T., Cichowski K., Brass L. F. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem. 1992 Mar 25;267(9):6081–6085. [PubMed] [Google Scholar]
  49. Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vouret-Craviari V., Van Obberghen-Schilling E., Scimeca J. C., Van Obberghen E., Pouysségur J. Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem J. 1993 Jan 1;289(Pt 1):209–214. doi: 10.1042/bj2890209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
  52. Wahl M., Lucherini M. J., Gruenstein E. Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium. 1990 Aug;11(7):487–500. doi: 10.1016/0143-4160(90)90081-5. [DOI] [PubMed] [Google Scholar]
  53. Weiss R. H., Nuccitelli R. Inhibition of tyrosine phosphorylation prevents thrombin-induced mitogenesis, but not intracellular free calcium release, in vascular smooth muscle cells. J Biol Chem. 1992 Mar 15;267(8):5608–5613. [PubMed] [Google Scholar]
  54. Weksler B. B., Ley C. W., Jaffe E. A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest. 1978 Nov;62(5):923–930. doi: 10.1172/JCI109220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van Corven E. J., Hordijk P. L., Medema R. H., Bos J. L., Moolenaar W. H. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1257–1261. doi: 10.1073/pnas.90.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. van den Berghe N., Ouwens D. M., Maassen J. A., van Mackelenbergh M. G., Sips H. C., Krans H. M. Activation of the Ras/mitogen-activated protein kinase signaling pathway alone is not sufficient to induce glucose uptake in 3T3-L1 adipocytes. Mol Cell Biol. 1994 Apr;14(4):2372–2377. doi: 10.1128/mcb.14.4.2372. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES