Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 15;308(Pt 3):1009–1016. doi: 10.1042/bj3081009

Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from bovine iris sphincter smooth muscle: effects of protein phosphorylation in vitro and in intact muscle.

X L Wang 1, R A Akhtar 1, A A Abdel-Latif 1
PMCID: PMC1136823  PMID: 8948463

Abstract

Stimulation of bovine iris sphincter muscle with carbachol (10 microM) increased accumulation of Ins(1,4,5)P3 (InsP3) and Ins(1,3,4,5)P4 (InsP4) by 86 and 32% respectively. Addition of isoproterenol (5 microM) to muscle pretreated with carbachol reduced the 3H-radioactivity in InsP3 by 30% and increased that of InsP4 by 41%. InsP3 3-kinase was predominantly localized in the soluble fraction (110,000 g supernatant) of the iris sphincter. The enzyme was purified from this fraction by sequential chromatography on DEAE-cellulose, calmodulin (CAM)-agarose affinity, and Mono-Q anion-exchange columns. The specific activity of the purified enzyme was 1.94 mumol/min per mg protein with a purification of 114-fold, compared with the cytosolic fraction of the muscle. SDS/PAGE showed the enzyme to be associated with a protein band corresponding to 50 kDa. In the presence of 10 microM Ca2+, CaM dose-dependently stimulated the enzyme. InsP3 3-kinase specifically phosphorylated InsP3 with an apparent K(m) of 0.56 microM and a Vmax. of 2.5 mumol/min per mg protein. The stimulatory effect of CaM was due to a change in Vmax. and not in its K(m). The enzyme was maximally active at pH 7.0-7.5. Phosphorylation of the purified InsP3 3-kinase with protein kinase A increased its activity; in contrast, phosphorylation with protein kinase C inhibited the enzyme activity. Treatment of the intact iris sphincter with isoproterenol or phorbol 12,13-dibutyrate resulted in stimulation of InsP3 3-kinase activity in the soluble fraction and this activation was preserved on SDS/PAGE and renaturation. These results indicate that the bovine iris sphincter contains a Ca-CaM-dependent InsP3 3-kinase which can be differentially regulated, both in vitro and in intact muscle, by protein kinases A and C.

Full text

PDF
1009

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Biochemical and functional interactions between the inositol 1,4,5-trisphosphate-Ca2+ and cyclic AMP signalling systems in smooth muscle. Cell Signal. 1991;3(5):371–385. doi: 10.1016/0898-6568(91)90068-6. [DOI] [PubMed] [Google Scholar]
  2. Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, generation of second messengers and contraction in the mammalian iris smooth muscle: historical perspectives and current status. Life Sci. 1989;45(9):757–786. doi: 10.1016/0024-3205(89)90170-7. [DOI] [PubMed] [Google Scholar]
  3. Adelstein R. S., Sellers J. R., Conti M. A., Pato M. D., de Lanerolle P. Regulation of smooth muscle contractile proteins by calmodulin and cyclic AMP. Fed Proc. 1982 Oct;41(12):2873–2878. [PubMed] [Google Scholar]
  4. Akhtar R. A., Honkanen R. E., Howe P. H., Abdel-Latif A. A. M2 muscarinic receptor subtype is associated with inositol trisphosphate accumulation, myosin light chain phosphorylation and contraction in sphincter smooth muscle of rabbit iris. J Pharmacol Exp Ther. 1987 Nov;243(2):624–632. [PubMed] [Google Scholar]
  5. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  6. Biden T. J., Altin J. G., Karjalainen A., Bygrave F. L. Stimulation of hepatic inositol 1,4,5-trisphosphate kinase activity by Ca2+-dependent and -independent mechanisms. Biochem J. 1988 Dec 15;256(3):697–701. doi: 10.1042/bj2560697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., Rhee S. G. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 1990 Apr 6;248(4951):64–66. doi: 10.1126/science.2157285. [DOI] [PubMed] [Google Scholar]
  8. Communi D., Vanweyenberg V., Erneux C. Purification and biochemical properties of a high-molecular-mass inositol 1,4,5-trisphosphate 3-kinase isoenzyme in human platelets. Biochem J. 1994 Mar 15;298(Pt 3):669–673. doi: 10.1042/bj2980669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Santos C. S., Communi D., Ludgate M., Vanweyenberg V., Takazawa K., Erneux C. Identification of high molecular weight forms of inositol 1,4,5-trisphosphate 3-kinase in rat thymus and human lymphocytes. Cell Signal. 1994 Mar;6(3):335–344. doi: 10.1016/0898-6568(94)90038-8. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  11. Hogan S. P., Foster P. S., Hansbro P. M., Ozaki S., Denborough M. A. Detection and partial purification of inositol 1,4,5-trisphosphate 3-kinase from porcine skeletal muscle. Cell Signal. 1994 Feb;6(2):233–243. doi: 10.1016/0898-6568(94)90081-7. [DOI] [PubMed] [Google Scholar]
  12. Houslay M. D. 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 1991 Jan 1;195(1):9–27. doi: 10.1111/j.1432-1033.1991.tb15671.x. [DOI] [PubMed] [Google Scholar]
  13. Howe P. H., Abdel-Latif A. A. Phorbol ester-induced protein phosphorylation and contraction in sphincter smooth muscle of rabbit iris. FEBS Lett. 1987 May 11;215(2):279–284. doi: 10.1016/0014-5793(87)80162-x. [DOI] [PubMed] [Google Scholar]
  14. Imboden J. B., Pattison G. Regulation of inositol 1,4,5-trisphosphate kinase activity after stimulation of human T cell antigen receptor. J Clin Invest. 1987 May;79(5):1538–1541. doi: 10.1172/JCI112986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Irvine R. F. Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res. 1992;26:161–185. [PubMed] [Google Scholar]
  16. Kattenburg D. M., Daniel E. E. Effects of an endogenous cyclic AMP-dependent protein kinase catalytic subunit on Ca-uptake by plasma membrane vesicles from rat mesenteric artery. Blood Vessels. 1984;21(6):257–266. doi: 10.1159/000158528. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lee S. Y., Sim S. S., Kim J. W., Moon K. H., Kim J. H., Rhee S. G. Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. Susceptibility to calpain. J Biol Chem. 1990 Jun 5;265(16):9434–9440. [PubMed] [Google Scholar]
  20. Li G., Comte M., Wollheim C. B., Cox J. A. Mode of activation of bovine brain inositol 1,4,5-trisphosphate 3-kinase by calmodulin and calcium. Biochem J. 1989 Jun 15;260(3):771–775. doi: 10.1042/bj2600771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lin A., Wallace R. W., Barnes S. Purification and properties of a human platelet inositol 1,4,5-trisphosphate 3-kinase. Arch Biochem Biophys. 1993 Jun;303(2):412–420. doi: 10.1006/abbi.1993.1303. [DOI] [PubMed] [Google Scholar]
  22. Majerus P. W. Inositol phosphate biochemistry. Annu Rev Biochem. 1992;61:225–250. doi: 10.1146/annurev.bi.61.070192.001301. [DOI] [PubMed] [Google Scholar]
  23. Morris A. J., Murray K. J., England P. J., Downes C. P., Michell R. H. Partial purification and some properties of rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1988 Apr 1;251(1):157–163. doi: 10.1042/bj2510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raeymaekers L., Eggermont J. A., Wuytack F., Casteels R. Effects of cyclic nucleotide dependent protein kinases on the endoplasmic reticulum Ca2+ pump of bovine pulmonary artery. Cell Calcium. 1990 Apr;11(4):261–268. doi: 10.1016/0143-4160(90)90002-c. [DOI] [PubMed] [Google Scholar]
  25. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sim S. S., Kim J. W., Rhee S. G. Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem. 1990 Jun 25;265(18):10367–10372. [PubMed] [Google Scholar]
  27. Tachado S. D., Zhang Y., Abdel-Latif A. A. Protein kinase C is involved in cyclic adenosine monophosphate formation due to PGF2 alpha desensitization in bovine iris sphincter. Invest Ophthalmol Vis Sci. 1993 May;34(6):2023–2032. [PubMed] [Google Scholar]
  28. Takazawa K., Erneux C. Identification of residues essential for catalysis and binding of calmodulin in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1991 Nov 15;280(Pt 1):125–129. doi: 10.1042/bj2800125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takazawa K., Passareiro H., Dumont J. E., Erneux C. Purification of bovine brain inositol 1,4,5-trisphosphate 3-kinase. Identification of the enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Biochem J. 1989 Jul 15;261(2):483–488. doi: 10.1042/bj2610483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a new putative inositol 1,4,5-trisphosphate 3-kinase isoenzyme. Biochem J. 1991 Sep 15;278(Pt 3):883–886. doi: 10.1042/bj2780883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takazawa K., Vandekerckhove J., Dumont J. E., Erneux C. Cloning and expression in Escherichia coli of a rat brain cDNA encoding a Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1990 Nov 15;272(1):107–112. doi: 10.1042/bj2720107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang X. L., Akhtar R. A., Abdel-Latif A. A. Studies on the properties of myo-inositol-1,4,5-trisphosphate 5-phosphatase and myo-inositol monophosphatase in bovine iris sphincter smooth muscle: effects of okadaic acid and protein phosphorylation. Biochim Biophys Acta. 1994 May 26;1222(1):27–36. doi: 10.1016/0167-4889(94)90021-3. [DOI] [PubMed] [Google Scholar]
  33. Yamaguchi K., Hirata M., Kuriyama H. Calmodulin activates inositol 1,4,5-trisphosphate 3-kinase activity in pig aortic smooth muscle. Biochem J. 1987 Jun 15;244(3):787–791. doi: 10.1042/bj2440787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamaguchi K., Hirata M., Kuriyama H. Purification and characterization of inositol 1,4,5-trisphosphate 3-kinase from pig aortic smooth muscle. Biochem J. 1988 Apr 1;251(1):129–134. doi: 10.1042/bj2510129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhou C. J., Akhtar R. A., Abdel-Latif A. A. Purification and characterization of phosphoinositide-specific phospholipase C from bovine iris sphincter smooth muscle. Biochem J. 1993 Jan 15;289(Pt 2):401–409. doi: 10.1042/bj2890401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES