Abstract
Stimulation of bovine iris sphincter muscle with carbachol (10 microM) increased accumulation of Ins(1,4,5)P3 (InsP3) and Ins(1,3,4,5)P4 (InsP4) by 86 and 32% respectively. Addition of isoproterenol (5 microM) to muscle pretreated with carbachol reduced the 3H-radioactivity in InsP3 by 30% and increased that of InsP4 by 41%. InsP3 3-kinase was predominantly localized in the soluble fraction (110,000 g supernatant) of the iris sphincter. The enzyme was purified from this fraction by sequential chromatography on DEAE-cellulose, calmodulin (CAM)-agarose affinity, and Mono-Q anion-exchange columns. The specific activity of the purified enzyme was 1.94 mumol/min per mg protein with a purification of 114-fold, compared with the cytosolic fraction of the muscle. SDS/PAGE showed the enzyme to be associated with a protein band corresponding to 50 kDa. In the presence of 10 microM Ca2+, CaM dose-dependently stimulated the enzyme. InsP3 3-kinase specifically phosphorylated InsP3 with an apparent K(m) of 0.56 microM and a Vmax. of 2.5 mumol/min per mg protein. The stimulatory effect of CaM was due to a change in Vmax. and not in its K(m). The enzyme was maximally active at pH 7.0-7.5. Phosphorylation of the purified InsP3 3-kinase with protein kinase A increased its activity; in contrast, phosphorylation with protein kinase C inhibited the enzyme activity. Treatment of the intact iris sphincter with isoproterenol or phorbol 12,13-dibutyrate resulted in stimulation of InsP3 3-kinase activity in the soluble fraction and this activation was preserved on SDS/PAGE and renaturation. These results indicate that the bovine iris sphincter contains a Ca-CaM-dependent InsP3 3-kinase which can be differentially regulated, both in vitro and in intact muscle, by protein kinases A and C.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Latif A. A. Biochemical and functional interactions between the inositol 1,4,5-trisphosphate-Ca2+ and cyclic AMP signalling systems in smooth muscle. Cell Signal. 1991;3(5):371–385. doi: 10.1016/0898-6568(91)90068-6. [DOI] [PubMed] [Google Scholar]
- Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, generation of second messengers and contraction in the mammalian iris smooth muscle: historical perspectives and current status. Life Sci. 1989;45(9):757–786. doi: 10.1016/0024-3205(89)90170-7. [DOI] [PubMed] [Google Scholar]
- Adelstein R. S., Sellers J. R., Conti M. A., Pato M. D., de Lanerolle P. Regulation of smooth muscle contractile proteins by calmodulin and cyclic AMP. Fed Proc. 1982 Oct;41(12):2873–2878. [PubMed] [Google Scholar]
- Akhtar R. A., Honkanen R. E., Howe P. H., Abdel-Latif A. A. M2 muscarinic receptor subtype is associated with inositol trisphosphate accumulation, myosin light chain phosphorylation and contraction in sphincter smooth muscle of rabbit iris. J Pharmacol Exp Ther. 1987 Nov;243(2):624–632. [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Biden T. J., Altin J. G., Karjalainen A., Bygrave F. L. Stimulation of hepatic inositol 1,4,5-trisphosphate kinase activity by Ca2+-dependent and -independent mechanisms. Biochem J. 1988 Dec 15;256(3):697–701. doi: 10.1042/bj2560697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., Rhee S. G. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 1990 Apr 6;248(4951):64–66. doi: 10.1126/science.2157285. [DOI] [PubMed] [Google Scholar]
- Communi D., Vanweyenberg V., Erneux C. Purification and biochemical properties of a high-molecular-mass inositol 1,4,5-trisphosphate 3-kinase isoenzyme in human platelets. Biochem J. 1994 Mar 15;298(Pt 3):669–673. doi: 10.1042/bj2980669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Santos C. S., Communi D., Ludgate M., Vanweyenberg V., Takazawa K., Erneux C. Identification of high molecular weight forms of inositol 1,4,5-trisphosphate 3-kinase in rat thymus and human lymphocytes. Cell Signal. 1994 Mar;6(3):335–344. doi: 10.1016/0898-6568(94)90038-8. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Hogan S. P., Foster P. S., Hansbro P. M., Ozaki S., Denborough M. A. Detection and partial purification of inositol 1,4,5-trisphosphate 3-kinase from porcine skeletal muscle. Cell Signal. 1994 Feb;6(2):233–243. doi: 10.1016/0898-6568(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Houslay M. D. 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 1991 Jan 1;195(1):9–27. doi: 10.1111/j.1432-1033.1991.tb15671.x. [DOI] [PubMed] [Google Scholar]
- Howe P. H., Abdel-Latif A. A. Phorbol ester-induced protein phosphorylation and contraction in sphincter smooth muscle of rabbit iris. FEBS Lett. 1987 May 11;215(2):279–284. doi: 10.1016/0014-5793(87)80162-x. [DOI] [PubMed] [Google Scholar]
- Imboden J. B., Pattison G. Regulation of inositol 1,4,5-trisphosphate kinase activity after stimulation of human T cell antigen receptor. J Clin Invest. 1987 May;79(5):1538–1541. doi: 10.1172/JCI112986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irvine R. F. Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res. 1992;26:161–185. [PubMed] [Google Scholar]
- Kattenburg D. M., Daniel E. E. Effects of an endogenous cyclic AMP-dependent protein kinase catalytic subunit on Ca-uptake by plasma membrane vesicles from rat mesenteric artery. Blood Vessels. 1984;21(6):257–266. doi: 10.1159/000158528. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee S. Y., Sim S. S., Kim J. W., Moon K. H., Kim J. H., Rhee S. G. Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. Susceptibility to calpain. J Biol Chem. 1990 Jun 5;265(16):9434–9440. [PubMed] [Google Scholar]
- Li G., Comte M., Wollheim C. B., Cox J. A. Mode of activation of bovine brain inositol 1,4,5-trisphosphate 3-kinase by calmodulin and calcium. Biochem J. 1989 Jun 15;260(3):771–775. doi: 10.1042/bj2600771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin A., Wallace R. W., Barnes S. Purification and properties of a human platelet inositol 1,4,5-trisphosphate 3-kinase. Arch Biochem Biophys. 1993 Jun;303(2):412–420. doi: 10.1006/abbi.1993.1303. [DOI] [PubMed] [Google Scholar]
- Majerus P. W. Inositol phosphate biochemistry. Annu Rev Biochem. 1992;61:225–250. doi: 10.1146/annurev.bi.61.070192.001301. [DOI] [PubMed] [Google Scholar]
- Morris A. J., Murray K. J., England P. J., Downes C. P., Michell R. H. Partial purification and some properties of rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1988 Apr 1;251(1):157–163. doi: 10.1042/bj2510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raeymaekers L., Eggermont J. A., Wuytack F., Casteels R. Effects of cyclic nucleotide dependent protein kinases on the endoplasmic reticulum Ca2+ pump of bovine pulmonary artery. Cell Calcium. 1990 Apr;11(4):261–268. doi: 10.1016/0143-4160(90)90002-c. [DOI] [PubMed] [Google Scholar]
- Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sim S. S., Kim J. W., Rhee S. G. Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem. 1990 Jun 25;265(18):10367–10372. [PubMed] [Google Scholar]
- Tachado S. D., Zhang Y., Abdel-Latif A. A. Protein kinase C is involved in cyclic adenosine monophosphate formation due to PGF2 alpha desensitization in bovine iris sphincter. Invest Ophthalmol Vis Sci. 1993 May;34(6):2023–2032. [PubMed] [Google Scholar]
- Takazawa K., Erneux C. Identification of residues essential for catalysis and binding of calmodulin in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1991 Nov 15;280(Pt 1):125–129. doi: 10.1042/bj2800125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takazawa K., Passareiro H., Dumont J. E., Erneux C. Purification of bovine brain inositol 1,4,5-trisphosphate 3-kinase. Identification of the enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Biochem J. 1989 Jul 15;261(2):483–488. doi: 10.1042/bj2610483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a new putative inositol 1,4,5-trisphosphate 3-kinase isoenzyme. Biochem J. 1991 Sep 15;278(Pt 3):883–886. doi: 10.1042/bj2780883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takazawa K., Vandekerckhove J., Dumont J. E., Erneux C. Cloning and expression in Escherichia coli of a rat brain cDNA encoding a Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1990 Nov 15;272(1):107–112. doi: 10.1042/bj2720107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X. L., Akhtar R. A., Abdel-Latif A. A. Studies on the properties of myo-inositol-1,4,5-trisphosphate 5-phosphatase and myo-inositol monophosphatase in bovine iris sphincter smooth muscle: effects of okadaic acid and protein phosphorylation. Biochim Biophys Acta. 1994 May 26;1222(1):27–36. doi: 10.1016/0167-4889(94)90021-3. [DOI] [PubMed] [Google Scholar]
- Yamaguchi K., Hirata M., Kuriyama H. Calmodulin activates inositol 1,4,5-trisphosphate 3-kinase activity in pig aortic smooth muscle. Biochem J. 1987 Jun 15;244(3):787–791. doi: 10.1042/bj2440787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi K., Hirata M., Kuriyama H. Purification and characterization of inositol 1,4,5-trisphosphate 3-kinase from pig aortic smooth muscle. Biochem J. 1988 Apr 1;251(1):129–134. doi: 10.1042/bj2510129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou C. J., Akhtar R. A., Abdel-Latif A. A. Purification and characterization of phosphoinositide-specific phospholipase C from bovine iris sphincter smooth muscle. Biochem J. 1993 Jan 15;289(Pt 2):401–409. doi: 10.1042/bj2890401. [DOI] [PMC free article] [PubMed] [Google Scholar]


