Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):1–8. doi: 10.1042/bj3080001

Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria.

N Murata 1, H Wada 1
PMCID: PMC1136835  PMID: 7755550

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aro E. M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta. 1993 Jul 5;1143(2):113–134. doi: 10.1016/0005-2728(93)90134-2. [DOI] [PubMed] [Google Scholar]
  2. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H. M., Somerville C. R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science. 1992 Nov 20;258(5086):1353–1355. doi: 10.1126/science.1455229. [DOI] [PubMed] [Google Scholar]
  3. Cahoon E. B., Ohlrogge J. B. Metabolic Evidence for the Involvement of a [delta]4-Palmitoyl-Acyl Carrier Protein Desaturase in Petroselinic Acid Synthesis in Coriander Endosperm and Transgenic Tobacco Cells. Plant Physiol. 1994 Mar;104(3):827–837. doi: 10.1104/pp.104.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cahoon E. B., Shanklin J., Ohlrogge J. B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11184–11188. doi: 10.1073/pnas.89.23.11184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys. 1975 May;8(2):185–235. doi: 10.1017/s0033583500001797. [DOI] [PubMed] [Google Scholar]
  6. Cooper P., Ort D. R. Changes in protein synthesis induced in tomato by chilling. Plant Physiol. 1988 Oct;88(2):454–461. doi: 10.1104/pp.88.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle M. F., Yu C. A. Preparation and reconstitution of a phospholipid deficient cytochrome b6-f complex from spinach chloroplasts. Biochem Biophys Res Commun. 1985 Sep 16;131(2):700–706. doi: 10.1016/0006-291x(85)91294-x. [DOI] [PubMed] [Google Scholar]
  8. Dzelzkalns V. A., Bogorad L. Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J. 1988 Feb;7(2):333–338. doi: 10.1002/j.1460-2075.1988.tb02817.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox B. G., Shanklin J., Somerville C., Münck E. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2486–2490. doi: 10.1073/pnas.90.6.2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fulco A. J. The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J Biol Chem. 1969 Feb 10;244(3):889–895. [PubMed] [Google Scholar]
  11. Gombos Z., Barabás K., Joó F., Vigh L. Lipid Saturation Induced Microviscosity Increase Has No Effect on the Reducibility of Flash-Oxidized Cytochrome f in Pea Thylakoids. Plant Physiol. 1988 Feb;86(2):335–337. doi: 10.1104/pp.86.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gombos Z., Wada H., Hideg E., Murata N. The Unsaturation of Membrane Lipids Stabilizes Photosynthesis against Heat Stress. Plant Physiol. 1994 Feb;104(2):563–567. doi: 10.1104/pp.104.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gombos Z., Wada H., Murata N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8787–8791. doi: 10.1073/pnas.91.19.8787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gombos Z., Wada H., Murata N. Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9959–9963. doi: 10.1073/pnas.89.20.9959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guy C. L., Niemi K. J., Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3673–3677. doi: 10.1073/pnas.82.11.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Higashi S., Murata N. An in Vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyltransferases in Lipid Synthesis in Synechocystis PCC6803. Plant Physiol. 1993 Aug;102(4):1275–1278. doi: 10.1104/pp.102.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hitz W. D., Carlson T. J., Booth J. R., Jr, Kinney A. J., Stecca K. L., Yadav N. S. Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol. 1994 Jun;105(2):635–641. doi: 10.1104/pp.105.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iba K., Gibson S., Nishiuchi T., Fuse T., Nishimura M., Arondel V., Hugly S., Somerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem. 1993 Nov 15;268(32):24099–24105. [PubMed] [Google Scholar]
  19. Ishizaki O., Nishida I., Agata K., Eguchi G., Murata N. Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett. 1988 Oct 10;238(2):424–430. doi: 10.1016/0014-5793(88)80525-8. [DOI] [PubMed] [Google Scholar]
  20. Jones A. L., Lloyd D., Harwood J. L. Rapid induction of microsomal delta 12(omega 6)-desaturase activity in chilled Acanthamoeba castellanii. Biochem J. 1993 Nov 15;296(Pt 1):183–188. doi: 10.1042/bj2960183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Joyard J., Block M. A., Douce R. Molecular aspects of plastid envelope biochemistry. Eur J Biochem. 1991 Aug 1;199(3):489–509. doi: 10.1111/j.1432-1033.1991.tb16148.x. [DOI] [PubMed] [Google Scholar]
  22. Kaestner K. H., Ntambi J. M., Kelly T. J., Jr, Lane M. D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1989 Sep 5;264(25):14755–14761. [PubMed] [Google Scholar]
  23. Kearns E. V., Hugly S., Somerville C. R. The role of cytochrome b5 in delta 12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch Biochem Biophys. 1991 Feb 1;284(2):431–436. doi: 10.1016/0003-9861(91)90319-e. [DOI] [PubMed] [Google Scholar]
  24. Knutzon D. S., Scherer D. E., Schreckengost W. E. Nucleotide Sequence of a Complementary DNA Clone Encoding Stearoyl-Acyl Carrier Protein Desaturase from Castor Bean, Ricinus communis. Plant Physiol. 1991 May;96(1):344–345. doi: 10.1104/pp.96.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Knutzon D. S., Thompson G. A., Radke S. E., Johnson W. B., Knauf V. C., Kridl J. C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2624–2628. doi: 10.1073/pnas.89.7.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Los D., Horvath I., Vigh L., Murata N. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett. 1993 Feb 22;318(1):57–60. doi: 10.1016/0014-5793(93)81327-v. [DOI] [PubMed] [Google Scholar]
  27. McKeon T. A., Stumpf P. K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982 Oct 25;257(20):12141–12147. [PubMed] [Google Scholar]
  28. Mihara K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem. 1990 Dec;108(6):1022–1029. doi: 10.1093/oxfordjournals.jbchem.a123301. [DOI] [PubMed] [Google Scholar]
  29. Mohapatra S. S., Poole R. J., Dhindsa R. S. Changes in Protein Patterns and Translatable Messenger RNA Populations during Cold Acclimation of Alfalfa. Plant Physiol. 1987 Aug;84(4):1172–1176. doi: 10.1104/pp.84.4.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murata K. Synthesis and transport of cholesterol in aortic cells: radiosiotopic studies in cell culture. Experientia. 1968 Nov 15;24(11):1111–1112. doi: 10.1007/BF02147788. [DOI] [PubMed] [Google Scholar]
  31. Murata N. Low-temperature effects on cyanobacterial membranes. J Bioenerg Biomembr. 1989 Feb;21(1):61–75. doi: 10.1007/BF00762212. [DOI] [PubMed] [Google Scholar]
  32. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nishida I., Beppu T., Matsuo T., Murata N. Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Mol Biol. 1992 Jul;19(4):711–713. doi: 10.1007/BF00026799. [DOI] [PubMed] [Google Scholar]
  34. Nishida I., Tasaka Y., Shiraishi H., Murata N. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol. 1993 Jan;21(2):267–277. doi: 10.1007/BF00019943. [DOI] [PubMed] [Google Scholar]
  35. Nishiyama Y., Hayashi H., Watanabe T., Murata N. Photosynthetic oxygen evolution is stabilized by cytochrome c550 against heat inactivation in Synechococcus sp. PCC 7002. Plant Physiol. 1994 Aug;105(4):1313–1319. doi: 10.1104/pp.105.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ntambi J. M., Buhrow S. A., Kaestner K. H., Christy R. J., Sibley E., Kelly T. J., Jr, Lane M. D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1988 Nov 25;263(33):17291–17300. [PubMed] [Google Scholar]
  37. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994 Jan;6(1):147–158. doi: 10.1105/tpc.6.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pearcy R. W. Effect of Growth Temperature on the Fatty Acid Composition of the Leaf Lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 1978 Apr;61(4):484–486. doi: 10.1104/pp.61.4.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Quinn P. J., Joo F., Vigh L. The role of unsaturated lipids in membrane structure and stability. Prog Biophys Mol Biol. 1989;53(2):71–103. doi: 10.1016/0079-6107(89)90015-1. [DOI] [PubMed] [Google Scholar]
  40. Reddy A. S., Nuccio M. L., Gross L. M., Thomas T. L. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol Biol. 1993 May;22(2):293–300. doi: 10.1007/BF00014936. [DOI] [PubMed] [Google Scholar]
  41. Sakamoto T., Los D. A., Higashi S., Wada H., Nishida I., Ohmori M., Murata N. Cloning of omega 3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol. 1994 Oct;26(1):249–263. doi: 10.1007/BF00039536. [DOI] [PubMed] [Google Scholar]
  42. Sakamoto T., Wada H., Nishida I., Ohmori M., Murata N. Identification of conserved domains in the delta 12 desaturases of cyanobacteria. Plant Mol Biol. 1994 Feb;24(4):643–650. doi: 10.1007/BF00023560. [DOI] [PubMed] [Google Scholar]
  43. Sakamoto T., Wada H., Nishida I., Ohmori M., Murata N. delta 9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. J Biol Chem. 1994 Oct 14;269(41):25576–25580. [PubMed] [Google Scholar]
  44. Sato N., Murata N., Miura Y., Ueta N. Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim Biophys Acta. 1979 Jan 29;572(1):19–28. [PubMed] [Google Scholar]
  45. Sato N., Murata N. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim Biophys Acta. 1980 Aug 11;619(2):353–366. doi: 10.1016/0005-2760(80)90083-1. [DOI] [PubMed] [Google Scholar]
  46. Schmidt H., Heinz E. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc Natl Acad Sci U S A. 1990 Dec 1;87(23):9477–9480. doi: 10.1073/pnas.87.23.9477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schmidt H., Heinz E. Direct desaturation of intact galactolipids by a desaturase solubilized from spinach (Spinacia oleracea) chloroplast envelopes. Biochem J. 1993 Feb 1;289(Pt 3):777–782. doi: 10.1042/bj2890777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schmidt H., Heinz E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 1990 Sep;94(1):214–220. doi: 10.1104/pp.94.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shanklin J., Mullins C., Somerville C. Sequence of a Complementary DNA from Cucumis sativus L. Encoding the Stearoyl-Acyl-Carrier Protein Desaturase. Plant Physiol. 1991 Sep;97(1):467–468. doi: 10.1104/pp.97.1.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shanklin J., Somerville C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2510–2514. doi: 10.1073/pnas.88.6.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Skriver L., Thompson G. A., Jr Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis. Biochim Biophys Acta. 1979 Feb 26;572(2):376–381. doi: 10.1016/0005-2760(79)90054-7. [DOI] [PubMed] [Google Scholar]
  52. Slocombe S. P., Cummins I., Jarvis R. P., Murphy D. J. Nucleotide sequence and temporal regulation of a seed-specific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol Biol. 1992 Oct;20(1):151–155. doi: 10.1007/BF00029157. [DOI] [PubMed] [Google Scholar]
  53. Smith M. A., Cross A. R., Jones O. T., Griffiths W. T., Stymne S., Stobart K. Electron-transport components of the 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (delta 12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem J. 1990 Nov 15;272(1):23–29. doi: 10.1042/bj2720023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Somerville C., Browse J. Plant lipids: metabolism, mutants, and membranes. Science. 1991 Apr 5;252(5002):80–87. doi: 10.1126/science.252.5002.80. [DOI] [PubMed] [Google Scholar]
  55. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  56. Strittmatter P., Spatz L., Corcoran D., Rogers M. J., Setlow B., Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4565–4569. doi: 10.1073/pnas.71.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Stukey J. E., McDonough V. M., Martin C. E. The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem. 1990 Nov 25;265(33):20144–20149. [PubMed] [Google Scholar]
  58. Thiede M. A., Ozols J., Strittmatter P. Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J Biol Chem. 1986 Oct 5;261(28):13230–13235. [PubMed] [Google Scholar]
  59. Thiede M. A., Strittmatter P. The induction and characterization of rat liver stearyl-CoA desaturase mRNA. J Biol Chem. 1985 Nov 25;260(27):14459–14463. [PubMed] [Google Scholar]
  60. Thompson G. A., Scherer D. E., Foxall-Van Aken S., Kenny J. W., Young H. L., Shintani D. K., Kridl J. C., Knauf V. C. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2578–2582. doi: 10.1073/pnas.88.6.2578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vigh L., Los D. A., Horváth I., Murata N. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9090–9094. doi: 10.1073/pnas.90.19.9090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wada H., Avelange-Macherel M. H., Murata N. The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase. J Bacteriol. 1993 Sep;175(18):6056–6058. doi: 10.1128/jb.175.18.6056-6058.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wada H., Gombos Z., Murata N. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4273–4277. doi: 10.1073/pnas.91.10.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wada H., Gombos Z., Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature. 1990 Sep 13;347(6289):200–203. doi: 10.1038/347200a0. [DOI] [PubMed] [Google Scholar]
  65. Wada H., Murata N. Temperature-Induced Changes in the Fatty Acid Composition of the Cyanobacterium, Synechocystis PCC6803. Plant Physiol. 1990 Apr;92(4):1062–1069. doi: 10.1104/pp.92.4.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wada H., Schmidt H., Heinz E., Murata N. In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J Bacteriol. 1993 Jan;175(2):544–547. doi: 10.1128/jb.175.2.544-547.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wolter F. P., Schmidt R., Heinz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 1992 Dec;11(13):4685–4692. doi: 10.1002/j.1460-2075.1992.tb05573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Yadav N. S., Wierzbicki A., Aegerter M., Caster C. S., Pérez-Grau L., Kinney A. J., Hitz W. D., Booth J. R., Jr, Schweiger B., Stecca K. L. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 1993 Oct;103(2):467–476. doi: 10.1104/pp.103.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Yamamoto K. T. Further characterization of auxin-regulated mRNAs in hypocotyl sections of mung bean [Vigna radiata (L.) Wilczek]: sequence homology to genes for fatty-acid desaturases and atypical late-embryogenesis-abundant protein, and the mode of expression of the mRNAs. Planta. 1994;192(3):359–364. doi: 10.1007/BF00198571. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES