Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):63–68. doi: 10.1042/bj3080063

Characterization of a cDNA clone for human NAD(+)-specific isocitrate dehydrogenase alpha-subunit and structural comparison with its isoenzymes from different species.

Y O Kim 1, I U Oh 1, H S Park 1, J Jeng 1, B J Song 1, T L Huh 1
PMCID: PMC1136843  PMID: 7755589

Abstract

A 0.6 kb cDNA fragment encoding the human NAD(+)-specific isocitrate dehydrogenase alpha-subunit (H-IDH alpha) was amplified by PCR using oligonucleotide primers synthesized on the basis of pig tryptic peptide sequences [Huang and Colman (1990) Biochemistry 29, 8266-8273]. With the amplified cDNA as a probe, cDNA clones for IDH alpha were isolated from a human heart lambda gt11 cDNA library. The deduced protein sequence of the largest cDNA clone (2628 bp) rendered a precursor protein of 366 amino acids (39,591 Da) and a mature protein of 339 amino acids (36,640 Da). The deduced H-IDH alpha protein sequence is highly similar to the partial peptide sequences of the pig enzyme. It is 55, 43 and 44% identical with yeast NAD(+)-specific IDH2, yeast NAD(+)-specific IDH1 and monkey NAD(+)-specific IDH gamma-subunit (IDH gamma) respectively. However, it has less similarity (about 30%) to NADP(+)-specific IDH from Escherichia coli and bovine mitochondria. These results indicate that the structure of IDH alpha closely resembles that of IDH2, the catalytic subunit of the yeast enzyme. Structural analysis of the deduced H-IDH alpha protein revealed that the amino acids responsible for the binding of isocitrate, Mg2+ and NAD+ are highly conserved. It also has two conserved motifs for the binding sites of ATP and ADP, but a canonical Ca(2+)-binding motif was not recognized. Unusual penta-(ATTTA) and tri-(TAA or ATT) nucleotides which are respectively believed to interact with RNA-binding proteins and be near the endonuclease cleavage sites were frequently recognized in its 3' untranslated region, indicating the possibility of an additional method of regulation of this enzyme. Northern-blot analysis suggests that one mRNA transcript (2.8 kb) exists in cultured HeLa cells. Genomic DNA Southern-blot analysis indicates that the IDH alpha gene is not closely related to that of the other IDH isoenzymes, and IDH alpha appears to be encoded by a single gene.

Full text

PDF
63

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes L. D., Kuehn G. D., Atkinson D. E. Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry. 1971 Oct 12;10(21):3939–3944. doi: 10.1021/bi00797a022. [DOI] [PubMed] [Google Scholar]
  2. Binder R., Hwang S. P., Ratnasabapathy R., Williams D. L. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5'-AAU-3'/5'-UAA-3' elements in single-stranded loop domains of the 3'-noncoding region. J Biol Chem. 1989 Oct 5;264(28):16910–16918. [PubMed] [Google Scholar]
  3. Cohen P. F., Colman R. F. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Charactgerization of the active substrate and modes of regulation. Biochemistry. 1972 Apr 11;11(8):1501–1508. doi: 10.1021/bi00758a027. [DOI] [PubMed] [Google Scholar]
  4. Cupp J. R., McAlister-Henn L. Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem. 1992 Aug 15;267(23):16417–16423. [PubMed] [Google Scholar]
  5. Cupp J. R., McAlister-Henn L. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry. 1993 Sep 14;32(36):9323–9328. doi: 10.1021/bi00087a010. [DOI] [PubMed] [Google Scholar]
  6. Cupp J. R., McAlister-Henn L. NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J Biol Chem. 1991 Nov 25;266(33):22199–22205. [PubMed] [Google Scholar]
  7. Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrlich R. S., Colman R. F. Binding of ligands to half of subunits of NAD-dependent isocitrate dehydrogenase from pig heart. Binding of manganous ion, isocitrate, ADP and NAD. J Biol Chem. 1981 Feb 10;256(3):1276–1282. [PubMed] [Google Scholar]
  9. Ehrlich R. S., Colman R. F. Interrelationships among nucleotide binding sites of pig heart NAD-dependent isocitrate dehydrogenase. J Biol Chem. 1982 May 10;257(9):4769–4774. [PubMed] [Google Scholar]
  10. Garnak M., Reeves H. C. Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. Science. 1979 Mar 16;203(4385):1111–1112. doi: 10.1126/science.34215. [DOI] [PubMed] [Google Scholar]
  11. Gascuel O., Golmard J. L. A simple method for predicting the secondary structure of globular proteins: implications and accuracy. Comput Appl Biosci. 1988 Aug;4(3):357–365. doi: 10.1093/bioinformatics/4.3.357. [DOI] [PubMed] [Google Scholar]
  12. Gillis P., Malter J. S. The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J Biol Chem. 1991 Feb 15;266(5):3172–3177. [PubMed] [Google Scholar]
  13. HATHAWAY J. A., ATKINSON D. E. THE EFFECT OF ADENYLIC ACID ON YEAST NICOTINAMIDE ADENINE DINUCLEOTIDE ISOCITRATE DEHYDROGENASE, A POSSIBLE METABOLIC CONTROL MECHANISM. J Biol Chem. 1963 Aug;238:2875–2881. [PubMed] [Google Scholar]
  14. Hartl F. U., Neupert W. Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science. 1990 Feb 23;247(4945):930–938. doi: 10.1126/science.2406905. [DOI] [PubMed] [Google Scholar]
  15. Haselbeck R. J., Colman R. F., McAlister-Henn L. Isolation and sequence of a cDNA encoding porcine mitochondrial NADP-specific isocitrate dehydrogenase. Biochemistry. 1992 Jul 14;31(27):6219–6223. doi: 10.1021/bi00142a007. [DOI] [PubMed] [Google Scholar]
  16. Huang Y. C., Colman R. F. Aspartyl peptide labeled by 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate in the allosteric ADP site of pig heart NAD+-dependent isocitrate dehydrogenase. J Biol Chem. 1989 Jul 25;264(21):12208–12214. [PubMed] [Google Scholar]
  17. Huang Y. C., Colman R. F. Subunit location and sequences of the cysteinyl peptides of pig heart NAD-dependent isocitrate dehydrogenase. Biochemistry. 1990 Sep 11;29(36):8266–8273. doi: 10.1021/bi00488a010. [DOI] [PubMed] [Google Scholar]
  18. Huh T. L., Ryu J. H., Huh J. W., Sung H. C., Oh I. U., Song B. J., Veech R. L. Cloning of a cDNA encoding bovine mitochondrial NADP(+)-specific isocitrate dehydrogenase and structural comparison with its isoenzymes from different species. Biochem J. 1993 Jun 15;292(Pt 3):705–710. doi: 10.1042/bj2920705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hurley J. H., Dean A. M., Koshland D. E., Jr, Stroud R. M. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry. 1991 Sep 3;30(35):8671–8678. doi: 10.1021/bi00099a026. [DOI] [PubMed] [Google Scholar]
  20. Hurley J. H., Dean A. M., Sohl J. L., Koshland D. E., Jr, Stroud R. M. Regulation of an enzyme by phosphorylation at the active site. Science. 1990 Aug 31;249(4972):1012–1016. doi: 10.1126/science.2204109. [DOI] [PubMed] [Google Scholar]
  21. Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jeng J., Huh T. L., Song B. J. Production of an enzymatically active E1 component of human pyruvate dehydrogenase complex in Escherichia coli: supporting role of E1 beta subunit in E1 activity. Biochem Biophys Res Commun. 1994 Aug 30;203(1):225–230. doi: 10.1006/bbrc.1994.2171. [DOI] [PubMed] [Google Scholar]
  23. Keys D. A., McAlister-Henn L. Subunit structure, expression, and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J Bacteriol. 1990 Aug;172(8):4280–4287. doi: 10.1128/jb.172.8.4280-4287.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koshland D. E., Jr, Walsh K., LaPorte D. C. Sensitivity of metabolic fluxes to covalent control. Curr Top Cell Regul. 1985;27:13–22. doi: 10.1016/b978-0-12-152827-0.50009-8. [DOI] [PubMed] [Google Scholar]
  25. LaPorte D. C., Thorsness P. E., Koshland D. E., Jr Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J Biol Chem. 1985 Sep 5;260(19):10563–10568. [PubMed] [Google Scholar]
  26. Malter J. S. Identification of an AUUUA-specific messenger RNA binding protein. Science. 1989 Nov 3;246(4930):664–666. doi: 10.1126/science.2814487. [DOI] [PubMed] [Google Scholar]
  27. Marsden B. J., Shaw G. S., Sykes B. D. Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochem Cell Biol. 1990 Mar;68(3):587–601. doi: 10.1139/o90-084. [DOI] [PubMed] [Google Scholar]
  28. Nichols B. J., Hall L., Perry A. C., Denton R. M. Molecular cloning and deduced amino acid sequences of the gamma-subunits of rat and monkey NAD(+)-isocitrate dehydrogenases. Biochem J. 1993 Oct 15;295(Pt 2):347–350. doi: 10.1042/bj2950347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nimmo G. A., Borthwick A. C., Holms W. H., Nimmo H. G. Partial purification and properties of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli ML308. Eur J Biochem. 1984 Jun 1;141(2):401–408. doi: 10.1111/j.1432-1033.1984.tb08205.x. [DOI] [PubMed] [Google Scholar]
  30. Noshiro M., Nishimoto M., Okuda K. Rat liver cholesterol 7 alpha-hydroxylase. Pretranslational regulation for circadian rhythm. J Biol Chem. 1990 Jun 15;265(17):10036–10041. [PubMed] [Google Scholar]
  31. Ramachandran N., Colman R. F. Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem. 1980 Sep 25;255(18):8859–8864. [PubMed] [Google Scholar]
  32. Rutter G. A., Denton R. M. Rapid purification of pig heart NAD+-isocitrate dehydrogenase. Studies on the regulation of activity by Ca2+, adenine nucleotides, Mg2+ and other metal ions. Biochem J. 1989 Oct 15;263(2):445–452. doi: 10.1042/bj2630445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  34. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  35. Stein A. M., Stein J. H., Kirkman S. K. Diphosphopyridine nucleotide specific isocitric dehydrogenase of mammalian mitochondria. I. On the roles of pyridine nucleotide transhydrogenase and the isocitric dehydrogenases in the respiration of mitochondria of normal and neoplastic tissues. Biochemistry. 1967 May;6(5):1370–1379. doi: 10.1021/bi00857a020. [DOI] [PubMed] [Google Scholar]
  36. Stoddard B. L., Koshland D. E., Jr Molecular recognition analyzed by docking simulations: the aspartate receptor and isocitrate dehydrogenase from Escherichia coli. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1146–1153. doi: 10.1073/pnas.90.4.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stoddard B. L., Koshland D. E., Jr Structure of isocitrate dehydrogenase with alpha-ketoglutarate at 2.7-A resolution: conformational changes induced by decarboxylation of isocitrate. Biochemistry. 1993 Sep 14;32(36):9317–9322. doi: 10.1021/bi00087a009. [DOI] [PubMed] [Google Scholar]
  38. Thorsness P. E., Koshland D. E., Jr Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422–10425. [PubMed] [Google Scholar]
  39. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wodnar-Filipowicz A., Moroni C. Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions. Proc Natl Acad Sci U S A. 1990 Jan;87(2):777–781. doi: 10.1073/pnas.87.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES