Abstract
The equilibria of linoleic acid (LA)-cyclodextrin (CD) complexes were studied to investigate the behaviour of 'soluble lipids' in solution as a function of factors that typically affect biochemical processes, such as pH, temperature and CD structure. The above complexes are formed with a stoicheiometry of 1:2 in solution. The first CD molecule interacts with LA through hydrogen bonds when the pH is below the fatty acid pK; hydrophobic interactions may also play an important role at high pH. The second CD molecule makes only hydrophobic contact with the LA hydrocarbon chain. The formation of hydrogen bonds is dependent on the inner diameter of the CD whereas the strength of the hydrophobic interactions between CD and LA can be related to the presence of hydrophobic groups in the CD. The first CD molecule interacts more strongly with LA at increased temperatures. The quantitative description of the LA-CD interaction allows absolute control of the effects produced by the lipid on biochemical processes.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergeron R., Machida Y., Bloch K. Complex formation between mycobacterial polysaccharides or cyclodextrins and palmitoyl coenzyme A. J Biol Chem. 1975 Feb 25;250(4):1223–1230. [PubMed] [Google Scholar]
- Chattopadhyay A., London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal Biochem. 1984 Jun;139(2):408–412. doi: 10.1016/0003-2697(84)90026-5. [DOI] [PubMed] [Google Scholar]
- Cistola D. P., Hamilton J. A., Jackson D., Small D. M. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry. 1988 Mar 22;27(6):1881–1888. doi: 10.1021/bi00406a013. [DOI] [PubMed] [Google Scholar]
- Jyothirmayi N., Ramadoss C. S. Soybean lipoxygenase catalysed oxygenation of unsaturated fatty acid encapsulated in cyclodextrin. Biochim Biophys Acta. 1991 May 8;1083(2):193–200. doi: 10.1016/0005-2760(91)90042-g. [DOI] [PubMed] [Google Scholar]
- Kawaguchi A., Bloch K. Inhibition of glucose 6-phosphate dehydrogenase by palmitoyl coenzyme A. J Biol Chem. 1974 Sep 25;249(18):5793–5800. [PubMed] [Google Scholar]
- Liu F. Y., Kildsig D. O., Mitra A. K. Cyclodextrin/weak-electrolyte complexation: interpretation and estimation of association constants from phase solubility diagrams. Pharm Res. 1992 Dec;9(12):1671–1672. doi: 10.1023/a:1015897332338. [DOI] [PubMed] [Google Scholar]
- Myles A. M., Barlow D. J., France G., Lawrence M. J. Analysis and modelling of the structures of beta-cyclodextrin complexes. Biochim Biophys Acta. 1994 Jan 5;1199(1):27–36. doi: 10.1016/0304-4165(94)90092-2. [DOI] [PubMed] [Google Scholar]
- Ohmori H. Development of a serum-free medium for in vitro immune responses by using beta-cyclodextrin. Demonstration of the requirements for polyamines. J Immunol Methods. 1988 Sep 13;112(2):227–233. doi: 10.1016/0022-1759(88)90362-6. [DOI] [PubMed] [Google Scholar]
- Ramadoss C. S., Uyeda K., Johnston J. M. Studies on the fatty acid inactivation of phosphofructokinase. J Biol Chem. 1976 Jan 10;251(1):98–107. [PubMed] [Google Scholar]
- Serth J., Lautwein A., Frech M., Wittinghofer A., Pingoud A. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures. EMBO J. 1991 Jun;10(6):1325–1330. doi: 10.1002/j.1460-2075.1991.tb07651.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhagen J., Vliegenthart J. F., Boldingh J. Micelle and acid-soap formation of linoleic acid and 13-L-hydroperoxylinoleic acid being substrates of lipoxygenase-1. Chem Phys Lipids. 1978 Nov;22(4):255–259. doi: 10.1016/0009-3084(78)90014-2. [DOI] [PubMed] [Google Scholar]
