Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):269–274. doi: 10.1042/bj3080269

Localization of cholesterol in sphingomyelinase-treated fibroblasts.

M I Pörn 1, J P Slotte 1
PMCID: PMC1136872  PMID: 7755574

Abstract

The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution.

Full text

PDF
269

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanchette-Mackie E. J., Dwyer N. K., Amende L. M., Kruth H. S., Butler J. D., Sokol J., Comly M. E., Vanier M. T., August J. T., Brady R. O. Type-C Niemann-Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8022–8026. doi: 10.1073/pnas.85.21.8022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butler J. D., Blanchette-Mackie J., Goldin E., O'Neill R. R., Carstea G., Roff C. F., Patterson M. C., Patel S., Comly M. E., Cooney A. Progesterone blocks cholesterol translocation from lysosomes. J Biol Chem. 1992 Nov 25;267(33):23797–23805. [PubMed] [Google Scholar]
  3. Börnig H., Geyer G. Staining of cholesterol with the fluorescent antibiotic "filipin". Acta Histochem. 1974;50(1):110–115. [PubMed] [Google Scholar]
  4. Chatterjee S. Neutral sphingomyelinase increases the binding, internalization, and degradation of low density lipoproteins and synthesis of cholesteryl ester in cultured human fibroblasts. J Biol Chem. 1993 Feb 15;268(5):3401–3406. [PubMed] [Google Scholar]
  5. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  6. Coxey R. A., Pentchev P. G., Campbell G., Blanchette-Mackie E. J. Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J Lipid Res. 1993 Jul;34(7):1165–1176. [PubMed] [Google Scholar]
  7. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  8. Gupta A. K., Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures. J Lipid Res. 1991 Jan;32(1):125–136. [PubMed] [Google Scholar]
  9. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hokland B. M., Slotte J. P., Bierman E. L., Oram J. F. Cyclic AMP stimulates efflux of intracellular sterol from cholesterol-loaded cells. J Biol Chem. 1993 Dec 5;268(34):25343–25349. [PubMed] [Google Scholar]
  11. Härmälä A. S., Pörn M. I., Slotte J. P. Sphingosine inhibits sphingomyelinase-induced cholesteryl ester formation in cultured fibroblasts. Biochim Biophys Acta. 1993 Dec 2;1210(1):97–104. doi: 10.1016/0005-2760(93)90054-d. [DOI] [PubMed] [Google Scholar]
  12. Kruth H. S., Vaughan M. Quantification of low density lipoprotein binding and cholesterol accumulation by single human fibroblasts using fluorescence microscopy. J Lipid Res. 1980 Jan;21(1):123–130. [PubMed] [Google Scholar]
  13. Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J Lipid Res. 1991 Feb;32(2):329–339. [PubMed] [Google Scholar]
  14. Lange Y., Ramos B. V. Analysis of the distribution of cholesterol in the intact cell. J Biol Chem. 1983 Dec 25;258(24):15130–15134. [PubMed] [Google Scholar]
  15. Lange Y., Strebel F., Steck T. L. Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J Biol Chem. 1993 Jul 5;268(19):13838–13843. [PubMed] [Google Scholar]
  16. Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
  17. Little C. Phospholipase C. Biochem Soc Trans. 1989 Apr;17(2):271–273. doi: 10.1042/bst0170271. [DOI] [PubMed] [Google Scholar]
  18. Lund-Katz S., Laboda H. M., McLean L. R., Phillips M. C. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry. 1988 May 3;27(9):3416–3423. doi: 10.1021/bi00409a044. [DOI] [PubMed] [Google Scholar]
  19. Moore N. F., Patzer E. J., Barenholz Y., Wagner R. R. Effect of phospholipase C and cholesterol oxidase on membrane integrity, microviscosity, and infectivity of vesicular stomatitis virus. Biochemistry. 1977 Oct 18;16(21):4708–4715. doi: 10.1021/bi00640a027. [DOI] [PubMed] [Google Scholar]
  20. Okwu A. K., Xu X. X., Shiratori Y., Tabas I. Regulation of the threshold for lipoprotein-induced acyl-CoA:cholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content. J Lipid Res. 1994 Apr;35(4):644–655. [PubMed] [Google Scholar]
  21. Otero M. J., Carrasco L. Exogenous phospholipase C permeabilizes mammalian cells to proteins. Exp Cell Res. 1988 Jul;177(1):154–161. doi: 10.1016/0014-4827(88)90033-x. [DOI] [PubMed] [Google Scholar]
  22. Pörn M. I., Ares M. P., Slotte J. P. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res. 1993 Aug;34(8):1385–1392. [PubMed] [Google Scholar]
  23. Pörn M. I., Slotte J. P. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells. Biochem J. 1990 Oct 1;271(1):121–126. doi: 10.1042/bj2710121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pörn M. I., Tenhunen J., Slotte J. P. Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation. Biochim Biophys Acta. 1991 Jun 7;1093(1):7–12. doi: 10.1016/0167-4889(91)90131-g. [DOI] [PubMed] [Google Scholar]
  25. Schumaker V. N., Puppione D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 1986;128:155–170. doi: 10.1016/0076-6879(86)28066-0. [DOI] [PubMed] [Google Scholar]
  26. Shiratori Y., Okwu A. K., Tabas I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 15;269(15):11337–11348. [PubMed] [Google Scholar]
  27. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slotte J. P., Hedström G., Rannström S., Ekman S. Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior. Biochim Biophys Acta. 1989 Oct 2;985(1):90–96. doi: 10.1016/0005-2736(89)90108-9. [DOI] [PubMed] [Google Scholar]
  30. Slotte J. P., Härmälä A. S., Jansson C., Pörn M. I. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase. Biochim Biophys Acta. 1990 Dec 14;1030(2):251–257. doi: 10.1016/0005-2736(90)90301-4. [DOI] [PubMed] [Google Scholar]
  31. Stein O., Ben-Naim M., Dabach Y., Hollander G., Stein Y. Modulation of sphingomyelinase-induced cholesterol esterification in fibroblasts, CaCo2 cells, macrophages and smooth muscle cells. Biochim Biophys Acta. 1992 Jun 26;1126(3):291–297. doi: 10.1016/0005-2760(92)90243-o. [DOI] [PubMed] [Google Scholar]
  32. Suckling K. E., Stange E. F. Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res. 1985 Jun;26(6):647–671. [PubMed] [Google Scholar]
  33. Vrielink A., Lloyd L. F., Blow D. M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol. 1991 Jun 5;219(3):533–554. doi: 10.1016/0022-2836(91)90192-9. [DOI] [PubMed] [Google Scholar]
  34. Wattenberg B. W., Silbert D. F. Sterol partitioning among intracellular membranes. Testing a model for cellular sterol distribution. J Biol Chem. 1983 Feb 25;258(4):2284–2289. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES