Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):291–296. doi: 10.1042/bj3080291

Effects of lactation on the signal transduction systems regulating lipolysis in sheep subcutaneous and omental adipose tissue.

R G Vernon 1, R Doris 1, E Finley 1, M D Houslay 1, E Kilgour 1, S Lindsay-Watt 1
PMCID: PMC1136875  PMID: 7755576

Abstract

The effect of lactation on the regulation of lipolysis by beta- and alpha 2-adrenergic agents and by adenosine has been investigated. When changes in adipocyte mean cell volume (which decreases with lactation) are allowed for, lactation increased the maximum response both to beta-adrenergic agents and to the adenosine analogue N6-phenylisopropyladenosine, but had no apparent effect on the responsiveness of the alpha 2-adrenergic system in both subcutaneous and omental adipocytes. For subcutaneous adipocytes, there was no significant change in the number of beta-adrenergic or alpha 2-adrenergic receptors, but the amount of Gs and the maximum (forskolin-stimulated) adenylate cyclase activity were increased by lactation. In contrast, in omental adipocytes, the number of beta- (but not alpha 2-) adrenergic receptors and the amount of Gs were increased, whereas forskolin-stimulated adenylate cyclase activity was unchanged by lactation. In both types of adipocyte, cyclic AMP phosphodiesterase and total protein kinase A activities were unchanged. Lactation had no effect on the number of adenosine receptors but increased the amounts of the Gi isoforms expressed in both types of adipocyte. These various adaptations differ markedly in a number of respects from those described previously in the rat. Lactation, then, while having a similar overall effect on the response to beta-adrenergic agonists of adipocytes, achieves this by depot-specific mechanisms. In contrast, changes in response to adenosine appear to involve the same mechanism in the two depots investigated.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitchison R. E., Clegg R. A., Vernon R. G. Lipolysis in rat adipocytes during pregnancy and lactation. The response to noradrenaline. Biochem J. 1982 Jan 15;202(1):243–247. doi: 10.1042/bj2020243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. G., Kilgour E., Houslay M. D. Subcellular localization and hormone sensitivity of adipocyte cyclic AMP phosphodiesterase. Biochem J. 1989 Sep 15;262(3):867–872. doi: 10.1042/bj2620867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauman D. E., Vernon R. G. Effects of exogenous bovine somatotropin on lactation. Annu Rev Nutr. 1993;13:437–461. doi: 10.1146/annurev.nu.13.070193.002253. [DOI] [PubMed] [Google Scholar]
  4. Bowen W. P., Flint D. J., Vernon R. G. Regional and interspecific differences in the ligand binding properties of beta-adrenergic receptors of individual white adipose tissue depots in the sheep and rat. Biochem Pharmacol. 1992 Aug 18;44(4):681–686. doi: 10.1016/0006-2952(92)90403-6. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Chilliard Y. Revue bibliographique: variations quantitatives et métabolisme des lipides dans les tissus adipeux et le foie au cours du cycle gestation-lactation. 2 partie: chez la brebis et la vache. Reprod Nutr Dev. 1987;27(2A):327–398. [PubMed] [Google Scholar]
  7. Clegg R. A., Ottey K. A. Cyclic AMP-dependent protein kinase in mammary tissue of the lactating rat. Activity ratio and responsiveness of the target enzymes acetyl-CoA carboxylase and glycogen phosphorylase to beta-adrenergic stimulation. Biochem J. 1990 Feb 1;265(3):769–775. doi: 10.1042/bj2650769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  9. Doris R., Vernon R. G., Houslay M. D., Kilgour E. Growth hormone decreases the response to anti-lipolytic agonists and decreases the levels of Gi2 in rat adipocytes. Biochem J. 1994 Jan 1;297(Pt 1):41–45. doi: 10.1042/bj2970041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guesnet P., Massoud M., Demarne Y. Effects of pregnancy and lactation on lipolysis of ewe adipocytes induced by beta-adrenergic stimulation. Mol Cell Endocrinol. 1987 Apr;50(3):177–181. doi: 10.1016/0303-7207(87)90015-3. [DOI] [PubMed] [Google Scholar]
  11. Hanson R. W., Ballard F. J. Citrate, pyruvate, and lactate contaminants of commercial serum albumin. J Lipid Res. 1968 Sep;9(5):667–668. [PubMed] [Google Scholar]
  12. Iliou J. P., Demarne Y. Evolution of the sensitivity of isolated adipocytes of ewes to the lipolytic effects of different stimuli during pregnancy and lactation. Int J Biochem. 1987;19(3):253–258. doi: 10.1016/0020-711x(87)90028-0. [DOI] [PubMed] [Google Scholar]
  13. Malbon C. C., Rapiejko P. J., Watkins D. C. Permissive hormone regulation of hormone-sensitive effector systems. Trends Pharmacol Sci. 1988 Jan;9(1):33–36. doi: 10.1016/0165-6147(88)90240-4. [DOI] [PubMed] [Google Scholar]
  14. Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNamara J. P. Regulation of adipose tissue metabolism in support of lactation. J Dairy Sci. 1991 Feb;74(2):706–719. doi: 10.3168/jds.S0022-0302(91)78217-9. [DOI] [PubMed] [Google Scholar]
  16. Mitchell F. M., Griffiths S. L., Saggerson E. D., Houslay M. D., Knowler J. T., Milligan G. Guanine-nucleotide-binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem J. 1989 Sep 1;262(2):403–408. doi: 10.1042/bj2620403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray K. J., England P. J., Lynham J. A., Mills D., Schmitz-Peiffer C., Reeves M. L. Use of a synthetic dodecapeptide (malantide) to measure the cyclic AMP-dependent protein kinase activity ratio in a variety of tissues. Biochem J. 1990 May 1;267(3):703–708. doi: 10.1042/bj2670703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Plested C. P., Taylor E., Brindley D. N., Vernon R. G. Interactions of insulin and dexamethasone in the control of pyruvate kinase activity and glucose metabolism in sheep adipose tissue. Biochem J. 1987 Oct 15;247(2):459–465. doi: 10.1042/bj2470459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robertson J. P., Faulkner A., Vernon R. G. Regulation of glycolysis and fatty acid synthesis from glucose in sheep adipose tissue. Biochem J. 1982 Sep 15;206(3):577–586. doi: 10.1042/bj2060577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith D. J., McNamara J. P. Lipolytic response of bovine adipose tissue to alpha and beta adrenergic agents 30 days pre- and 120 days postpartum. Gen Pharmacol. 1989;20(3):369–374. doi: 10.1016/0306-3623(89)90275-9. [DOI] [PubMed] [Google Scholar]
  21. Strassheim D., Milligan G., Houslay M. D. Diabetes abolishes the GTP-dependent, but not the receptor-dependent inhibitory function of the inhibitory guanine-nucleotide-binding regulatory protein (Gi) on adipocyte adenylate cyclase activity. Biochem J. 1990 Mar 1;266(2):521–526. doi: 10.1042/bj2660521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vernon R. G., Clegg R. A., Flint D. J. Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochem J. 1981 Nov 15;200(2):307–314. doi: 10.1042/bj2000307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vernon R. G., Finley E. Regulation of lipolysis during pregnancy and lactation in sheep. Response to noradrenaline and adenosine. Biochem J. 1985 Sep 15;230(3):651–656. doi: 10.1042/bj2300651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vernon R. G., Finley E., Taylor E. Adenosine and the control of lipolysis in rat adipocytes during pregnancy and lactation. Biochem J. 1983 Oct 15;216(1):121–128. doi: 10.1042/bj2160121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vernon R. G., Finley E., Watt P. W. Adenosine and the control of adrenergic regulation of adipose tissue lipolysis during lactation. J Dairy Sci. 1991 Feb;74(2):695–705. doi: 10.3168/jds.S0022-0302(91)78216-7. [DOI] [PubMed] [Google Scholar]
  26. Vernon R. G., Flint D. J. Control of fatty acid synthesis in lactation. Proc Nutr Soc. 1983 Jun;42(2):315–331. doi: 10.1079/pns19830035. [DOI] [PubMed] [Google Scholar]
  27. Vernon R. G., Piperova L., Watt P. W., Finley E., Lindsay-Watt S. Mechanisms involved in the adaptations of the adipocyte adrenergic signal-transduction system and their modulation by growth hormone during the lactation cycle in the rat. Biochem J. 1993 Feb 1;289(Pt 3):845–851. doi: 10.1042/bj2890845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Watt P. W., Finley E., Cork S., Clegg R. A., Vernon R. G. Chronic control of the beta- and alpha 2-adrenergic systems of sheep adipose tissue by growth hormone and insulin. Biochem J. 1991 Jan 1;273(Pt 1):39–42. doi: 10.1042/bj2730039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de la Hoz L., Vernon R. G. Endocrine control of sheep adipose tissue fatty acid synthesis: depot specific differences in response to lactation. Horm Metab Res. 1993 Apr;25(4):214–218. doi: 10.1055/s-2007-1002079. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES