Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):313–320. doi: 10.1042/bj3080313

Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins.

G J Euverink 1, D J Wolters 1, L Dijkhuizen 1
PMCID: PMC1136878  PMID: 7755580

Abstract

Prephenate dehydratase (PDT) is a key regulatory enzyme in L-phenylalanine biosynthesis in the Gram-positive bacterium Amycolatopsis methanolica. The PDT protein was purified to homogeneity (1957-fold) from wild-type cells with a final yield of 6.5%. It was characterized as a 150 kDa homotetrameric protein with a subunit size of 34 kDa. The first 35 N-terminal amino acids were identified, revealing highest similarity to the PDT proteins from Corynebacterium glutamicum and Bacillus subtilis. Kinetic studies showed that the A. methanolica PDT is allosterically inhibited by phenylalanine and activated by tyrosine. Phenylalanine caused an increase in the S0.5 for prephenate and a decrease in the Vmax. Tyrosine caused a decrease in the S0.5 for prephenate and an increase in the Vmax. Spontaneous o-fluoro- and p-fluoro-DL-phenylalanine-resistant mutants of A. methanolica were isolated. Kinetic studies with the partially purified PDT proteins of strains pFPhe32 and oFPhe84 showed that these mutant proteins had become (partly) insensitive to both phenylalanine inhibition and tyrosine activation.

Full text

PDF
313

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., McKenzie G. H., Davidson B. E. The self-association of chorismate mutase/prephenate dehydratase from Escherichia coli K12. Arch Biochem Biophys. 1981 Oct 1;211(1):76–85. doi: 10.1016/0003-9861(81)90431-8. [DOI] [PubMed] [Google Scholar]
  2. Bentley R. The shikimate pathway--a metabolic tree with many branches. Crit Rev Biochem Mol Biol. 1990;25(5):307–384. doi: 10.3109/10409239009090615. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Euverink G. J., Hessels G. I., Vrijbloed J. W., Coggins J. R., Dijkhuizen L. Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J Gen Microbiol. 1992 Nov;138(11):2449–2457. doi: 10.1099/00221287-138-11-2449. [DOI] [PubMed] [Google Scholar]
  5. Fazel A. M., Jensen R. A. Regulation of prephenate dehydratase in Coryneform species of bacteria by L-phenylalanine and by remote effectors. Arch Biochem Biophys. 1980 Mar;200(1):165–176. doi: 10.1016/0003-9861(80)90343-4. [DOI] [PubMed] [Google Scholar]
  6. Fischer R., Jensen R. Arogenate dehydratase. Methods Enzymol. 1987;142:495–502. doi: 10.1016/s0076-6879(87)42061-2. [DOI] [PubMed] [Google Scholar]
  7. Follettie M. T., Sinskey A. J. Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene. J Bacteriol. 1986 Aug;167(2):695–702. doi: 10.1128/jb.167.2.695-702.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gygax D., Ghisalba O., Treichler H., Nüesch J. Study to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. J Antibiot (Tokyo) 1990 Mar;43(3):324–326. doi: 10.7164/antibiotics.43.324. [DOI] [PubMed] [Google Scholar]
  9. Görisch H. Chorismate mutase from Streptomyces aureofaciens. Methods Enzymol. 1987;142:463–472. doi: 10.1016/s0076-6879(87)42057-0. [DOI] [PubMed] [Google Scholar]
  10. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  11. Hudson G. S., Davidson B. E. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984 Dec 25;180(4):1023–1051. doi: 10.1016/0022-2836(84)90269-9. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  13. Lowe D. A., Westlake D. W. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Branch-point enzymes of the shikimic acid pathway. Can J Biochem. 1972 Oct;50(10):1064–1073. doi: 10.1139/o72-147. [DOI] [PubMed] [Google Scholar]
  14. Nelms J., Edwards R. M., Warwick J., Fotheringham I. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol. 1992 Aug;58(8):2592–2598. doi: 10.1128/aem.58.8.2592-2598.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem. 1977 Aug 25;252(16):5839–5846. [PubMed] [Google Scholar]
  16. Riepl R. G., Glover G. I. Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors. J Biol Chem. 1979 Oct 25;254(20):10321–10328. [PubMed] [Google Scholar]
  17. Shiio I., Sugimoto S. Two components of chorismate mutase in Brevibacterium flavum. J Biochem. 1979 Jul;86(1):17–25. [PubMed] [Google Scholar]
  18. Speth A. R., Hund H. K., Lingens F. Terminal phenylalanine and tyrosine biosynthesis of Microtetraspora glauca. Biol Chem Hoppe Seyler. 1989 Jun;370(6):591–599. doi: 10.1515/bchm3.1989.370.1.591. [DOI] [PubMed] [Google Scholar]
  19. Sugimoto S., Shiio I. Purification and properties of dissociable chorismate mutase from Brevibacterium flavum. J Biochem. 1980 Jul;88(1):167–176. [PubMed] [Google Scholar]
  20. Sugimoto S., Shiio I. Regulation of prephenate dehydratase in Brevibacterium flavum. J Biochem. 1974 Nov;76(5):1103–1111. [PubMed] [Google Scholar]
  21. Trach K., Hoch J. A. The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol. 1989 Mar;171(3):1362–1371. doi: 10.1128/jb.171.3.1362-1371.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Xia T. H., Chiao J. S. Regulation of the biosynthetic pathway of aromatic amino acids in Nocardia mediterranei. Biochim Biophys Acta. 1989 Apr 25;991(1):6–11. doi: 10.1016/0304-4165(89)90020-2. [DOI] [PubMed] [Google Scholar]
  23. Xia T., Zhao G., Jensen R. A. Loss of allosteric control but retention of the bifunctional catalytic competence of a fusion protein formed by excision of 260 base pairs from the 3' terminus of pheA from Erwinia herbicola. Appl Environ Microbiol. 1992 Sep;58(9):2792–2798. doi: 10.1128/aem.58.9.2792-2798.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhao G., Xia T., Aldrich H., Jensen R. A. Cyclohexadienyl dehydratase from Pseudomonas aeruginosa is a periplasmic protein. J Gen Microbiol. 1993 Apr;139(4):807–813. doi: 10.1099/00221287-139-4-807. [DOI] [PubMed] [Google Scholar]
  25. de Boer L., Dijkhuizen L., Grobben G., Goodfellow M., Stackebrandt E., Parlett J. H., Whitehead D., Witt D. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int J Syst Bacteriol. 1990 Apr;40(2):194–204. doi: 10.1099/00207713-40-2-194. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES