Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 15;265(2):343–349. doi: 10.1042/bj2650343

How does fluoroaluminate activate human platelets?

F Rendu 1, M Lebret 1, D Tenza 1, S Levy-Toledano 1
PMCID: PMC1136893  PMID: 2302176

Abstract

Platelet activation induced by NaF or fluoroaluminate (AlF4-) was studied. The latter has been described to substitute for the gamma-phosphate group of the GTP molecule. With 10 mM-NaF, a concentration unable to induce any measurable Ca2+ mobilization (as measured with Indo 1), addition of AlCl3 potentiated platelet aggregation, thromboxane synthesis, diacylglycerol formation and p43 phosphorylation, without any increase in intracellular Ca2+. Neither phosphoinositide hydrolysis nor phosphatidic acid formation could be detected. AlF4- induced the release through a granule centralization within a microtubule bundle, although no myosin light-chain phosphorylation could be detected. Addition of flurbiprofen (10 microM) resulted in only partial inhibition of diacylglycerol formation, with no effect on the release reaction or on p43 phosphorylation. The present results suggest that AlF4- does not stimulate a G-protein governing the phosphoinositide-specific phospholipase C. The AlF4(-)-induced diacylglycerol formation is discussed. Moreover, these results bring evidence that there is no correlation between granule centralization and myosin light-chain phosphorylation.

Full text

PDF
343

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banga H. S., Walker R. K., Winberry L. K., Rittenhouse S. E. Pertussis toxin can activate human platelets. Comparative effects of holotoxin and its ADP-ribosylating S1 subunit. J Biol Chem. 1987 Nov 5;262(31):14871–14874. [PubMed] [Google Scholar]
  2. Barrowman M. M., Cockcroft S., Gomperts B. D. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature. 1986 Feb 6;319(6053):504–507. doi: 10.1038/319504a0. [DOI] [PubMed] [Google Scholar]
  3. Besterman J. M., Duronio V., Cuatrecasas P. Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6785–6789. doi: 10.1073/pnas.83.18.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bigay J., Deterre P., Pfister C., Chabre M. Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 1985 Oct 28;191(2):181–185. doi: 10.1016/0014-5793(85)80004-1. [DOI] [PubMed] [Google Scholar]
  5. Bocckino S. B., Blackmore P. F., Exton J. H. Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J Biol Chem. 1985 Nov 15;260(26):14201–14207. [PubMed] [Google Scholar]
  6. Bocckino S. B., Blackmore P. F., Wilson P. B., Exton J. H. Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem. 1987 Nov 5;262(31):15309–15315. [PubMed] [Google Scholar]
  7. Bocckino S. B., Wilson P. B., Exton J. H. Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett. 1987 Dec 10;225(1-2):201–204. doi: 10.1016/0014-5793(87)81157-2. [DOI] [PubMed] [Google Scholar]
  8. Brass L. F., Woolkalis M. J., Manning D. R. Interactions in platelets between G proteins and the agonists that stimulate phospholipase C and inhibit adenylyl cyclase. J Biol Chem. 1988 Apr 15;263(11):5348–5355. [PubMed] [Google Scholar]
  9. Chueh S. H., Gill D. L. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem. 1986 Oct 25;261(30):13883–13886. [PubMed] [Google Scholar]
  10. Crouch M. F., Lapetina E. G. A role for Gi in control of thrombin receptor-phospholipase C coupling in human platelets. J Biol Chem. 1988 Mar 5;263(7):3363–3371. [PubMed] [Google Scholar]
  11. Dangelmaier C. A., Holmsen H. Determination of acid hydrolases in human platelets. Anal Biochem. 1980 May 1;104(1):182–191. doi: 10.1016/0003-2697(80)90296-1. [DOI] [PubMed] [Google Scholar]
  12. Daniel L. W., Waite M., Wykle R. L. A novel mechanism of diglyceride formation. 12-O-tetradecanoylphorbol-13-acetate stimulates the cyclic breakdown and resynthesis of phosphatidylcholine. J Biol Chem. 1986 Jul 15;261(20):9128–9132. [PubMed] [Google Scholar]
  13. Dawson A. P., Hills G., Comerford J. G. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Biochem J. 1987 May 15;244(1):87–92. doi: 10.1042/bj2440087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  15. Haslam R. J., Davidson M. M. Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation. FEBS Lett. 1984 Aug 20;174(1):90–95. doi: 10.1016/0014-5793(84)81084-4. [DOI] [PubMed] [Google Scholar]
  16. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishihara N., Nagao K., Kobayashi B. Tyrosine phosphorylation of platelet protein induced by phorbol ester. Thromb Haemost. 1985 Oct 30;54(3):579–585. [PubMed] [Google Scholar]
  18. Kanaho Y., Moss J., Vaughan M. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J Biol Chem. 1985 Sep 25;260(21):11493–11497. [PubMed] [Google Scholar]
  19. Kienast J., Arnout J., Pfliegler G., Deckmyn H., Hoet B., Vermylen J. Sodium fluoride mimics effects of both agonists and antagonists on intact human platelets by simultaneous modulation of phospholipase C and adenylate cyclase activity. Blood. 1987 Mar;69(3):859–866. [PubMed] [Google Scholar]
  20. Legrand Y. J., Fauvel F., Arbeille B., Leger D., Mouhli H., Gutman N., Muh J. P. Activation of platelets by microfibrils and collagen. A comparative study. Lab Invest. 1986 May;54(5):566–573. [PubMed] [Google Scholar]
  21. Leung L. L. Role of thrombospondin in platelet aggregation. J Clin Invest. 1984 Nov;74(5):1764–1772. doi: 10.1172/JCI111595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liscovitch M., Blusztajn J. K., Freese A., Wurtman R. J. Stimulation of choline release from NG108-15 cells by 12-O-tetradecanoylphorbol 13-acetate. Biochem J. 1987 Jan 1;241(1):81–86. doi: 10.1042/bj2410081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mürer E. H., Davenport K., Siojo E., Day H. J. Metabolic aspects of the secretion of stored compounds from blood platelets. The effect of NaF at different pH on nucleotide metabolism and function of washed platelets. Biochem J. 1981 Jan 15;194(1):187–192. doi: 10.1042/bj1940187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mürer E. H. Release reaction and energy metabolism in blood platelets with special reference to the burst in oxygen uptake. Biochim Biophys Acta. 1968 Oct 1;162(3):320–326. doi: 10.1016/0005-2728(68)90118-7. [DOI] [PubMed] [Google Scholar]
  25. O'Rourke F., Zavoico G. B., Smith L. H., Jr, Feinstein M. B. Stimulus-response coupling in a cell-free platelet membrane system. GTP-dependent release of Ca2+ by thrombin, and inhibition by pertussis toxin and a monoclonal antibody that blocks calcium release by IP3. FEBS Lett. 1987 Apr 6;214(1):176–180. doi: 10.1016/0014-5793(87)80037-6. [DOI] [PubMed] [Google Scholar]
  26. Poll C., Kyrle P., Westwick J. Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation. Biochem Biophys Res Commun. 1986 Apr 14;136(1):381–389. doi: 10.1016/0006-291x(86)90922-8. [DOI] [PubMed] [Google Scholar]
  27. Pradelles P., Grassi J., Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal Chem. 1985 Jun;57(7):1170–1173. doi: 10.1021/ac00284a003. [DOI] [PubMed] [Google Scholar]
  28. Purdon A. D., Patelunas D., Smith J. B. Resolution of radiolabeled molecular species of phospholipid in human platelets: effect of thrombin. Lipids. 1987 Feb;22(2):116–120. doi: 10.1007/BF02534863. [DOI] [PubMed] [Google Scholar]
  29. Rendu F., Marche P., Hovig T., Maclouf J., Lebret M., Tenza D., Levy-Toledano S., Caen J. P. Abnormal phosphoinositide metabolism and protein phosphorylation in platelets from a patient with the grey platelet syndrome. Br J Haematol. 1987 Oct;67(2):199–206. doi: 10.1111/j.1365-2141.1987.tb02327.x. [DOI] [PubMed] [Google Scholar]
  30. Rendu F., Marche P., Viret J., Maclouf J., Lebret M., Tenza D., Caen J., Levy-Toledano S. Signal transduction in normal and pathological thrombin-stimulated human platelets. Biochimie. 1987 Apr;69(4):305–313. doi: 10.1016/0300-9084(87)90021-6. [DOI] [PubMed] [Google Scholar]
  31. Rosoff P. M., Savage N., Dinarello C. A. Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell. 1988 Jul 1;54(1):73–81. doi: 10.1016/0092-8674(88)90181-x. [DOI] [PubMed] [Google Scholar]
  32. Rubin R. Phosphatidylethanol formation in human platelets: evidence for thrombin-induced activation of phospholipase D. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1090–1096. doi: 10.1016/s0006-291x(88)80744-7. [DOI] [PubMed] [Google Scholar]
  33. Shattil S. J., Brass L. F. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem. 1987 Jan 25;262(3):992–1000. [PubMed] [Google Scholar]
  34. Siess W., Boehlig B., Weber P. C., Lapetina E. G. Prostaglandin endoperoxide analogues stimulate phospholipase C and protein phosphorylation during platelet shape change. Blood. 1985 May;65(5):1141–1148. [PubMed] [Google Scholar]
  35. Sternweis P. C., Gilman A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4888–4891. doi: 10.1073/pnas.79.16.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vickers J. D., Kinlough-Rathbone R. L., Mustard J. F. The effect of prostaglandins E1, I2 and F2 alpha on the shape and phosphatidylinositol-4,5-bisphosphate metabolism of washed rabbit platelets. Thromb Res. 1982 Dec 15;28(6):731–740. doi: 10.1016/0049-3848(82)90098-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES