Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 15;265(2):415–419. doi: 10.1042/bj2650415

Mitochondria have Fe(III) receptors.

J Weaver 1, H Zhan 1, S Pollack 1
PMCID: PMC1136902  PMID: 2154188

Abstract

Recent work has provided new evidence that ATP is the major constituent of the low-Mr iron pool in the reticulocyte. The interaction of the iron complex of ATP with mitochondria was investigated in the present experiments. When ATP-Fe3+ was incubated with mitochondria, Fe3+, free of ATP, bound with high affinity to Fe3+ receptors on the mitochondria. The binding was saturable and reversible. Iron which was complexed to PPi, nitrilotriacetate, citrate, ADP and GTP also showed saturable binding to mitochondria; Fe3+ complexed to AMP bound non-specifically, as did Fe2+/ascorbate complexed to AMP bound non-specifically, as did Fe2+/ascorbate and Fe2+/dithionite.

Full text

PDF
415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AASA R., MALMSTROEM B. G., SALTMAN P. THE SPECIFIC BINDING OF IRON(III) AND COPPER(II) TO TRANSFERRIN AND CONALBUMIN. Biochim Biophys Acta. 1963 Sep 24;75:203–222. doi: 10.1016/0006-3002(63)90599-7. [DOI] [PubMed] [Google Scholar]
  2. Bakkeren D. L., de Jeu-Jaspars C. M., van der Heul C., van Eijk H. G. Analysis of iron-binding components in the low molecular weight fraction of rat reticulocyte cytosol. Int J Biochem. 1985;17(8):925–930. doi: 10.1016/0020-711x(85)90177-6. [DOI] [PubMed] [Google Scholar]
  3. Bartlett G. R. Iron nucleotides in human and rat red cells. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1063–1070. doi: 10.1016/0006-291x(76)91010-x. [DOI] [PubMed] [Google Scholar]
  4. Bomford A., Young S., Williams R. Intracellular forms of iron during transferrin iron uptake by mitogen-stimulated human lymphocytes. Br J Haematol. 1986 Mar;62(3):487–494. doi: 10.1111/j.1365-2141.1986.tb02960.x. [DOI] [PubMed] [Google Scholar]
  5. Borová J., Ponka P., Neuwirt J. Study of intracellular iron distribution in rabbit reticulocytes with normal and inhibited heme synthesis. Biochim Biophys Acta. 1973 Aug 17;320(1):143–156. doi: 10.1016/0304-4165(73)90174-8. [DOI] [PubMed] [Google Scholar]
  6. Boulard M., Delin M., Najean Y., Beutler E. Identification and purification of a new non-heme, non-ferritin iron protein. Proc Soc Exp Biol Med. 1972 Apr;139(4):1379–1384. doi: 10.3181/00379727-139-36367. [DOI] [PubMed] [Google Scholar]
  7. Cowart R. E., Kojima N., Bates G. W. The exchange of Fe3+ between acetohydroxamic acid and transferrin. Spectrophotometric evidence for a mixed ligand complex. J Biol Chem. 1982 Jul 10;257(13):7560–7565. [PubMed] [Google Scholar]
  8. Eguchi L. A., Saltman P. The aerobic reduction of Fe(III) complexes by hemoglobin and myoglobin. J Biol Chem. 1984 Dec 10;259(23):14337–14338. [PubMed] [Google Scholar]
  9. Fernandez-Pol J. A. Isolation and characterization of a siderophore-like growth factor from mutants of SV40-transformed cells adapted to picolinic acid. Cell. 1978 Jul;14(3):489–499. doi: 10.1016/0092-8674(78)90235-0. [DOI] [PubMed] [Google Scholar]
  10. Hussein S., Hantke K., Braun V. Citrate-dependent iron transport system in Escherichia coli K-12. Eur J Biochem. 1981 Jul;117(2):431–437. doi: 10.1111/j.1432-1033.1981.tb06357.x. [DOI] [PubMed] [Google Scholar]
  11. Jones R. L., Grady R. W., Sorette M. P., Cerami A. Host-associated iron transfer factor in normal humans and patients with transfusion siderosis. J Lab Clin Med. 1986 May;107(5):431–438. [PubMed] [Google Scholar]
  12. KEBERLE H. THE BIOCHEMISTRY OF DESFERRIOXAMINE AND ITS RELATION TO IRON METABOLISM. Ann N Y Acad Sci. 1964 Oct 7;119:758–768. doi: 10.1111/j.1749-6632.1965.tb54077.x. [DOI] [PubMed] [Google Scholar]
  13. Konopka K. Differential effects of metal-binding agents on the uptake of iron from transferrin by isolated rat liver mitochondria. FEBS Lett. 1978 Aug 15;92(2):308–312. doi: 10.1016/0014-5793(78)80776-5. [DOI] [PubMed] [Google Scholar]
  14. Konopka K., Romslo I. Studies on the mechanism of pyrophosphate-mediated uptake of iron from transferrin by isolated rat-liver mitochondria. Eur J Biochem. 1981 Jul;117(2):239–244. doi: 10.1111/j.1432-1033.1981.tb06328.x. [DOI] [PubMed] [Google Scholar]
  15. Konopka K., Romslo I. Uptake of iron from transferrin by isolated rat-liver mitochondria mediated by phosphate compounds. Eur J Biochem. 1980 Jun;107(2):433–439. doi: 10.1111/j.1432-1033.1980.tb06048.x. [DOI] [PubMed] [Google Scholar]
  16. Konopka K., Szotor M. Determination of iron in the acid-soluble fraction of human erythrocytes. Acta Haematol. 1972;47(3):157–163. doi: 10.1159/000208510. [DOI] [PubMed] [Google Scholar]
  17. LaCross D. M., Linder M. C. Synthesis of rat muscle ferritins and function in iron metabolism of heart and diaphragm. Biochim Biophys Acta. 1980 Nov 17;633(1):45–55. doi: 10.1016/0304-4165(80)90036-7. [DOI] [PubMed] [Google Scholar]
  18. Mansour M. M., Schulert A. R., Glasser S. R. Mechanism of placental iron transfer in the rat. Am J Physiol. 1972 Jun;222(6):1628–1633. doi: 10.1152/ajplegacy.1972.222.6.1628. [DOI] [PubMed] [Google Scholar]
  19. Meyers N. L., Brewer G. J., Oelshlegel F. J., Jr Iron-ATP, a by-product of acid extraction of whole blood or red blood cells. Biochim Biophys Acta. 1973 Sep 14;320(2):397–405. doi: 10.1016/0304-4165(73)90321-8. [DOI] [PubMed] [Google Scholar]
  20. Milsom J. P., Batey R. G. The mechanism of hepatic iron uptake from native and denatured transferrin and its subcellular metabolism in the liver cell. Biochem J. 1979 Jul 15;182(1):117–125. doi: 10.1042/bj1820117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mulligan M., Althaus B., Linder M. C. Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem. 1986;18(9):791–798. doi: 10.1016/0020-711x(86)90055-8. [DOI] [PubMed] [Google Scholar]
  22. Neilands J. B. Iron absorption and transport in microorganisms. Annu Rev Nutr. 1981;1:27–46. doi: 10.1146/annurev.nu.01.070181.000331. [DOI] [PubMed] [Google Scholar]
  23. Nilsen T., Romslo I. Iron uptake and heme synthesis by isolated rat liver mitochondria. Diferric transferrin as iron donor and the effect of pyrophosphate. Biochim Biophys Acta. 1985 Oct 17;842(2-3):162–169. doi: 10.1016/0304-4165(85)90198-9. [DOI] [PubMed] [Google Scholar]
  24. Nilsen T., Romslo I. Pyrophosphate as a ligand for delivery of iron to isolated rat-liver mitochondria. Biochim Biophys Acta. 1984 Jul 27;766(1):233–239. doi: 10.1016/0005-2728(84)90236-6. [DOI] [PubMed] [Google Scholar]
  25. Nilsen T., Romslo I. Transferrin as a donor of iron to mitochondria. Effect of pyrophosphate and relationship to mitochondrial metabolism and heme synthesis. Biochim Biophys Acta. 1984 Dec 20;802(3):448–453. doi: 10.1016/0304-4165(84)90363-5. [DOI] [PubMed] [Google Scholar]
  26. Nunez M. T., Glass J., Robinson S. H. Mobilization of iron from the plasma membrane of the murine reticulocyte. The role of ferritin. Biochim Biophys Acta. 1978 May 4;509(1):170–180. doi: 10.1016/0005-2736(78)90017-2. [DOI] [PubMed] [Google Scholar]
  27. Pickart L., Thaler M. M. Growth-modulating tripeptide (glycylhistidyllysine): association with copper and iron in plasma, and stimulation of adhesiveness and growth of hepatoma cells in culture by tripeptide-metal ion complexes. J Cell Physiol. 1980 Feb;102(2):129–139. doi: 10.1002/jcp.1041020205. [DOI] [PubMed] [Google Scholar]
  28. Pippard M. J., Johnson D. K., Finch C. A. Hepatocyte iron kinetics in the rat explored with an iron chelator. Br J Haematol. 1982 Oct;52(2):211–224. doi: 10.1111/j.1365-2141.1982.tb03883.x. [DOI] [PubMed] [Google Scholar]
  29. Pollack S., Campana T. Early events in guinea pig reticulocyte iron uptake. Biochim Biophys Acta. 1981 Apr 3;673(4):366–373. doi: 10.1016/0304-4165(81)90468-2. [DOI] [PubMed] [Google Scholar]
  30. Pollack S., Campana T., Weaver J. Low molecular weight iron in guinea pig reticulocytes. Am J Hematol. 1985 May;19(1):75–84. doi: 10.1002/ajh.2830190110. [DOI] [PubMed] [Google Scholar]
  31. Pollack S., Weaver J. Iron release from transferrin: synergistic interaction between adenosine triphosphate and an ammonium sulfate fraction of hemolysate. J Lab Clin Med. 1986 Nov;108(5):411–414. [PubMed] [Google Scholar]
  32. Primosigh J. V., Thomas E. D. Studies on the partition of iron in bone marrow cells. J Clin Invest. 1968 Jul;47(7):1473–1482. doi: 10.1172/JCI105841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell L. M., Holmes R. K. Initial characterization of the ferric iron transport system of Corynebacterium diphtheriae. J Bacteriol. 1983 Sep;155(3):1439–1442. doi: 10.1128/jb.155.3.1439-1442.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ulvik R., Prante P. H., Koller M. E., Romslo I. Transferrin and iron uptake by isolated rat liver mitochondria. Scand J Clin Lab Invest. 1976 Oct;36(6):539–546. doi: 10.3109/00365517609054476. [DOI] [PubMed] [Google Scholar]
  35. Weaver J., Pollack S. Low-Mr iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes. Biochem J. 1989 Aug 1;261(3):787–792. doi: 10.1042/bj2610787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. White G. P., Bailey-Wood R., Jacobs A. The effect of chelating agents on cellular iron metabolism. Clin Sci Mol Med. 1976 Mar;50(3):145–152. doi: 10.1042/cs0500145. [DOI] [PubMed] [Google Scholar]
  37. Zhan H., Pollack S., Weaver J. Hemolysates reduce iron released from transferrin. Am J Hematol. 1989 Jul;31(3):203–207. doi: 10.1002/ajh.2830310311. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES