Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jan 15;265(2):599–604. doi: 10.1042/bj2650599

Molecular cloning, sequencing and expression of cytochrome c2 from Rhodospirillum rubrum.

S J Self 1, C N Hunter 1, R J Leatherbarrow 1
PMCID: PMC1136926  PMID: 2154194

Abstract

Cytochrome c2 (Mr 12,840) of the purple photosynthetic bacterium Rhodospirillum rubrum functions as a mobile electron carrier in the cyclic photosynthetic electron-transport system of this organism. It acts as the electron donor to photochemically oxidized reaction centres and is reduced in turn by electrons from the cytochrome bc1 complex. By using synthetic oligonucleotides based on the known amino acid sequence of the protein, the structural gene (cycA) has been identified and isolated. DNA sequence analysis indicates the presence of a typical prokaryotic 23-residue signal sequence, suggesting that the protein is synthesized as a precursor which is processed during its secretion into the periplasm. Evidence is presented for the production of assembled cytochrome c2 in Escherichia coli, but recombinants grow poorly and are unstable, suggesting toxicity of the gene product in this organism.

Full text

PDF
599

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bérard J., Bélanger G., Gingras G. Mapping of the puh messenger RNAs from Rhodospirillum rubrum. Evidence for tandem promoters. J Biol Chem. 1989 Jun 25;264(18):10897–10903. [PubMed] [Google Scholar]
  2. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daldal F., Cheng S., Applebaum J., Davidson E., Prince R. C. Cytochrome c(2) is not essential for photosynthetic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2012–2016. doi: 10.1073/pnas.83.7.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donohue T. J., McEwan A. G., Kaplan S. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol. 1986 Nov;168(2):962–972. doi: 10.1128/jb.168.2.962-972.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donohue T. J., McEwan A. G., Van Doren S., Crofts A. R., Kaplan S. Phenotypic and genetic characterization of cytochrome c2 deficient mutants of Rhodobacter sphaeroides. Biochemistry. 1988 Mar 22;27(6):1918–1925. doi: 10.1021/bi00406a018. [DOI] [PubMed] [Google Scholar]
  6. Dus K., Sletten K., Kamen M. D. Cytochrome c2 of Rhodospirillum rubrum. II. Complete amino acid sequence and phylogenetic relationships. J Biol Chem. 1968 Oct 25;243(20):5507–5518. [PubMed] [Google Scholar]
  7. Falk G., Walker J. E. Transcription of Rhodospirillum rubrum atp operon. Biochem J. 1985 Aug 1;229(3):663–668. doi: 10.1042/bj2290663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. HORIO T., KAMEN M. D. Preparation and properties of three pure crystalline bacterial haem proteins. Biochim Biophys Acta. 1961 Apr 1;48:266–286. doi: 10.1016/0006-3002(61)90476-0. [DOI] [PubMed] [Google Scholar]
  10. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
  12. SISTROM W. R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Jun;22:778–785. doi: 10.1099/00221287-22-3-778. [DOI] [PubMed] [Google Scholar]
  13. Salemme F. R., Freer S. T., Xuong N. H., Alden R. A., Kraut J. The structure of oxidized cytochrome c 2 of Rhodospirillum rubrum. J Biol Chem. 1973 Jun 10;248(11):3910–3921. doi: 10.2210/pdb1c2c/pdb. [DOI] [PubMed] [Google Scholar]
  14. Salemme F. R., Kraut J., Kamen M. D. Structural bases for function in cytochromes c. An interpretation of comparative x-ray and biochemical data. J Biol Chem. 1973 Nov 25;248(22):7701–7716. [PubMed] [Google Scholar]
  15. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  16. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  17. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES