Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 1;308(Pt 2):641–644. doi: 10.1042/bj3080641

The haem b558 component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine-methionine axial ligation.

F Spinner 1, M R Cheesman 1, A J Thomson 1, T Kaysser 1, R B Gennis 1, Q Peng 1, J Peterson 1
PMCID: PMC1136974  PMID: 7772053

Abstract

The cytochrome bd ubiquinol oxidase from Escherichia coli is induced when the bacteria are cultured under microaerophilic or low-aeration conditions. This membrane-bound respiratory oxidase catalyses the two-electron oxidation of ubiquinol and the four-electron reduction of dioxygen to water. The oxidase contains three haem prosthetic groups: haem b558, haem b595 and haem d. Haem d is the oxygen binding site, and it is likely that haem d and b595 form a bimetallic site in the enzyme. Haem b558 has been previously characterized spectroscopically as being low spin and has been shown to be located within subunit I (CydA) of this two-subunit enzyme. It is likely that haem b558 is associated with the quinol oxidation site, which has also been shown to be within subunit I. In a previous effort to locate the specific amino acids axially ligated to haem b558, all six histidines within subunit I were altered by site-directed mutagenesis. Only one, histidine-186, was identified as a likely ligand to haem b558. Hence it was suggested that haem b558 could not have bis(histidine) ligation. In the current work, a combination of low-temperature near-infrared magnetic circular dichroism (NIR-MCD) and EPR spectroscopies have been employed to identify the nature of the haem b558 axial ligands. The NIR-MCD spectrum at cryogenic temperatures is dominated by the low-spin haem b558 component of the complex, and the low-energy band near 1800 nm is strong evidence for histidine-methionine ligation. It is concluded that haem b558 is ligated to histidine-186 plus one of the methionines located within subunit I of the oxidase.

Full text

PDF
641

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciero D. M., Peng Q., Peterson J., Hooper A. B. Identification of axial ligands of cytochrome c552 from Nitrosomonas europaea. FEBS Lett. 1994 Apr 4;342(2):217–220. doi: 10.1016/0014-5793(94)80504-0. [DOI] [PubMed] [Google Scholar]
  2. Calhoun M. W., Thomas J. W., Gennis R. B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. doi: 10.1016/0968-0004(94)90071-x. [DOI] [PubMed] [Google Scholar]
  3. Dueweke T. J., Gennis R. B. Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain. J Biol Chem. 1990 Mar 15;265(8):4273–4277. [PubMed] [Google Scholar]
  4. Dueweke T. J., Gennis R. B. Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain. Biochemistry. 1991 Apr 9;30(14):3401–3406. doi: 10.1021/bi00228a007. [DOI] [PubMed] [Google Scholar]
  5. Fang H., Lin R. J., Gennis R. B. Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis. J Biol Chem. 1989 May 15;264(14):8026–8032. [PubMed] [Google Scholar]
  6. Gadsby P. M., Hartshorn R. T., Moura J. J., Sinclair-Day J. D., Sykes A. G., Thomson A. J. Redox properties of the diheme cytochrome c4 from Azotobacter vinelandii and characterisation of the two hemes by NMR, MCD and EPR spectroscopy. Biochim Biophys Acta. 1989 Jan 19;994(1):37–46. doi: 10.1016/0167-4838(89)90059-9. [DOI] [PubMed] [Google Scholar]
  7. Georgiou C. D., Dueweke T. J., Gennis R. B. Beta-galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli. J Biol Chem. 1988 Sep 15;263(26):13130–13137. [PubMed] [Google Scholar]
  8. Green G. N., Lorence R. M., Gennis R. B. Specific overproduction and purification of the cytochrome b558 component of the cytochrome d complex from Escherichia coli. Biochemistry. 1986 May 6;25(9):2309–2314. doi: 10.1021/bi00357a002. [DOI] [PubMed] [Google Scholar]
  9. Hata-Tanaka A., Matsuura K., Itoh S., Anraku Y. Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli. Biochim Biophys Acta. 1987 Sep 10;893(2):289–295. doi: 10.1016/0005-2728(87)90050-8. [DOI] [PubMed] [Google Scholar]
  10. Hill S., Viollet S., Smith A. T., Anthony C. Roles for enteric d-type cytochrome oxidase in N2 fixation and microaerobiosis. J Bacteriol. 1990 Apr;172(4):2071–2078. doi: 10.1128/jb.172.4.2071-2078.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hosler J. P., Ferguson-Miller S., Calhoun M. W., Thomas J. W., Hill J., Lemieux L., Ma J., Georgiou C., Fetter J., Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr. 1993 Apr;25(2):121–136. doi: 10.1007/BF00762854. [DOI] [PubMed] [Google Scholar]
  12. Jünemann S., Wrigglesworth J. M. Antimycin inhibition of the cytochrome bd complex from Azotobacter vinelandii indicates the presence of a branched electron transfer pathway for the oxidation of ubiquinol. FEBS Lett. 1994 May 30;345(2-3):198–202. doi: 10.1016/0014-5793(94)00372-6. [DOI] [PubMed] [Google Scholar]
  13. Kahlow M. A., Zuberi T. M., Gennis R. B., Loehr T. M. Identification of a ferryl intermediate of Escherichia coli cytochrome d terminal oxidase by resonance Raman spectroscopy. Biochemistry. 1991 Dec 10;30(49):11485–11489. doi: 10.1021/bi00113a001. [DOI] [PubMed] [Google Scholar]
  14. Kranz R. G., Gennis R. B. Immunological investigation of the distribution of cytochromes related to the two terminal oxidases of Escherichia coli in other gram-negative bacteria. J Bacteriol. 1985 Feb;161(2):709–713. doi: 10.1128/jb.161.2.709-713.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorence R. M., Carter K., Gennis R. B., Matsushita K., Kaback H. R. Trypsin proteolysis of the cytochrome d complex of Escherichia coli selectively inhibits ubiquinol oxidase activity while not affecting N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity. J Biol Chem. 1988 Apr 15;263(11):5271–5276. [PubMed] [Google Scholar]
  16. Lorence R. M., Koland J. G., Gennis R. B. Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of "cytochrome a1" as cytochrome b595. Biochemistry. 1986 May 6;25(9):2314–2321. doi: 10.1021/bi00357a003. [DOI] [PubMed] [Google Scholar]
  17. Meinhardt S. W., Gennis R. B., Ohnishi T. EPR studies of the cytochrome-d complex of Escherichia coli. Biochim Biophys Acta. 1989 Jun 23;975(1):175–184. doi: 10.1016/s0005-2728(89)80216-6. [DOI] [PubMed] [Google Scholar]
  18. Miller M. J., Gennis R. B. The cytochrome d complex is a coupling site in the aerobic respiratory chain of Escherichia coli. J Biol Chem. 1985 Nov 15;260(26):14003–14008. [PubMed] [Google Scholar]
  19. Miller M. J., Gennis R. B. The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem. 1983 Aug 10;258(15):9159–9165. [PubMed] [Google Scholar]
  20. Miller M. J., Hermodson M., Gennis R. B. The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits. J Biol Chem. 1988 Apr 15;263(11):5235–5240. [PubMed] [Google Scholar]
  21. Minghetti K. C., Gennis R. B. The two terminal oxidases of the aerobic respiratory chain of Escherichia coli each yield water and not peroxide as a final product. Biochem Biophys Res Commun. 1988 Aug 30;155(1):243–248. doi: 10.1016/s0006-291x(88)81075-1. [DOI] [PubMed] [Google Scholar]
  22. Moshiri F., Chawla A., Maier R. J. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol. 1991 Oct;173(19):6230–6241. doi: 10.1128/jb.173.19.6230-6241.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newton G., Yun C. H., Gennis R. B. Analysis of the topology of the cytochrome d terminal oxidase complex of Escherichia coli by alkaline phosphatase fusions. Mol Microbiol. 1991 Oct;5(10):2511–2518. doi: 10.1111/j.1365-2958.1991.tb02097.x. [DOI] [PubMed] [Google Scholar]
  24. Puustinen A., Finel M., Haltia T., Gennis R. B., Wikström M. Properties of the two terminal oxidases of Escherichia coli. Biochemistry. 1991 Apr 23;30(16):3936–3942. doi: 10.1021/bi00230a019. [DOI] [PubMed] [Google Scholar]
  25. Rothery R. A., Ingledew W. J. The cytochromes of anaerobically grown Escherichia coli. An electron-paramagnetic-resonance study of the cytochrome bd complex in situ. Biochem J. 1989 Jul 15;261(2):437–443. doi: 10.1042/bj2610437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith A., Hill S., Anthony C. The purification, characterization and role of the d-type cytochrome oxidase of Klebsiella pneumoniae during nitrogen fixation. J Gen Microbiol. 1990 Jan;136(1):171–180. doi: 10.1099/00221287-136-1-171. [DOI] [PubMed] [Google Scholar]
  27. Trumpower B. L., Gennis R. B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem. 1994;63:675–716. doi: 10.1146/annurev.bi.63.070194.003331. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES