Abstract
Multiple binding sites for inhibitory choline esters in spontaneous decarbamoylation of dimethylcarbamoyl-acetylcholinesterase (AChE) were suggested from a wide range of IC50 values, in contrast with a limited range of AC50 values (concentration giving 50% of maximal activation) at a peripheral activatory site. Association of choline esters containing a long acyl chain (C7-C12) with the hydrophobic zone in the active site could be deduced from a linear relationship between the size of the acyl group and the inhibitory potency in either spontaneous decarbamoylation or acetylthiocholine hydrolysis. Direct support for laurylcholine binding to the active site might come from the competitive inhibition (Ki 33 microM) of choline-catalysed decarbamoylation by laurylcholine. Moreover, its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE, where there is a greater steric hindrance at the active centre. In further support, the inhibition of pentanoylthiocholine-induced decarbamoylation by laurylcholine was suggested to be due to laurylcholine binding to a central site rather than a peripheral site, similar to the inhibition of spontaneous decarbamoylation by laurylcholine. Supportive data for acetylcholine binding to the active site are provided by the results that acetylcholine is a competitive inhibitor (Ki 7.6 mM) of choline-catalysed decarbamoylation, and its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE. Meanwhile, choline esters with an acyl group of an intermediate size (C4-C6), more subject to steric exclusion at the active centre, and less associable with the hydrophobic zone, appear to bind preferentially to a peripheral activity site. Thus the multiple effects of choline esters may be governed by hydrophobicity and/or a steric effect exerted by the acyl moiety at the binding sites.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berman H. A., Decker M. M. Kinetic, equilibrium, and spectroscopic studies on dealkylation ("aging") of alkyl organophosphonyl acetylcholinesterase. Electrostatic control of enzyme topography. J Biol Chem. 1986 Aug 15;261(23):10646–10652. [PubMed] [Google Scholar]
- Cohen S. G., Chishti S. B., Bell D. A., Howard S. I., Salih E., Cohen J. B. General occurrence of binding to acetylcholinesterase-substrate complex in noncompetitive inhibition and in inhibition by substrate. Biochim Biophys Acta. 1991 Jan 8;1076(1):112–122. doi: 10.1016/0167-4838(91)90227-q. [DOI] [PubMed] [Google Scholar]
- Dawson R. M. Carbamylation and decarbamylation of acetylcholinesterase: effect of choline, 3,3-dimethyl-1-butanol and some allosteric effectors. J Neurochem. 1978 Apr;30(4):865–870. doi: 10.1111/j.1471-4159.1978.tb10795.x. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Friboulet A., Rieger F., Goudou D., Amitai G., Taylor P. Interaction of an organophosphate with a peripheral site on acetylcholinesterase. Biochemistry. 1990 Jan 30;29(4):914–920. doi: 10.1021/bi00456a010. [DOI] [PubMed] [Google Scholar]
- Froede H. C., Wilson I. B., Kaufman H. Acetylcholinesterase: theory of noncompetitive inhibition. Arch Biochem Biophys. 1986 Jun;247(2):420–423. doi: 10.1016/0003-9861(86)90601-6. [DOI] [PubMed] [Google Scholar]
- Harris L. W., Heyl W. C., Stitcher D. L., Broomfield C. A. Effects of 1,1'-oxydimethylene bis-(4-tert-butylpyridinium chloride) (SAD-128) and decamethonium on reactivation of soman- and sarin-inhibited cholinesterase by oximes. Biochem Pharmacol. 1978 Mar 1;27(5):757–761. doi: 10.1016/0006-2952(78)90516-6. [DOI] [PubMed] [Google Scholar]
- Hucho F., Järv J., Weise C. Substrate-binding sites in acetylcholinesterase. Trends Pharmacol Sci. 1991 Nov;12(11):422–426. doi: 10.1016/0165-6147(91)90621-x. [DOI] [PubMed] [Google Scholar]
- Kim Y. B., Jung C. H., Choi S. J., Seo W. J., Cha S. H., Sok D. E. Potentiation effect of choline esters on choline-catalysed decarbamoylation of dimethylcarbamoyl-acetylcholinesterase. Biochem J. 1992 May 15;284(Pt 1):153–160. doi: 10.1042/bj2840153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitz R. J., Braswell L. M., Ginsburg S. On the question: is acetylcholinesterase an allosteric protein? Mol Pharmacol. 1970 Mar;6(2):108–121. [PubMed] [Google Scholar]
- Pavlic M. R., Wilson I. B. On the mechanism of the acceleration of methanesulfonylation of acetylcholinesterase with cationic accelerators. Biochim Biophys Acta. 1978 Mar 14;523(1):101–108. doi: 10.1016/0005-2744(78)90013-x. [DOI] [PubMed] [Google Scholar]
- Radić Z., Gibney G., Kawamoto S., MacPhee-Quigley K., Bongiorno C., Taylor P. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry. 1992 Oct 13;31(40):9760–9767. doi: 10.1021/bi00155a032. [DOI] [PubMed] [Google Scholar]
- Radić Z., Reiner E., Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol. 1991 Jan;39(1):98–104. [PubMed] [Google Scholar]
- Roufogalis B. D., Quist E. E. Relative binding sites of pharmacologically active ligands on bovine erythrocyte acetylcholinesterase. Mol Pharmacol. 1972 Jan;8(1):41–49. [PubMed] [Google Scholar]
- Salih E. Two-hydronic-reactive states of acetylcholinesterase, mechanistically relevant acid-base catalyst of pKa 6.5 and a modulatory group of pKa 5.5. Biochim Biophys Acta. 1991 Jan 23;1073(1):183–194. doi: 10.1016/0304-4165(91)90200-z. [DOI] [PubMed] [Google Scholar]
- Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sok D. E., Kim Y. B., Cha S. H., Chung Y. S. Effect of choline esters on the decarbamylation of dimethylcarbamyl-acetylcholinesterase. Neurochem Int. 1992 Feb;20(2):201–205. doi: 10.1016/0197-0186(92)90168-q. [DOI] [PubMed] [Google Scholar]
- Soreq H., Gnatt A., Loewenstein Y., Neville L. F. Excavations into the active-site gorge of cholinesterases. Trends Biochem Sci. 1992 Sep;17(9):353–358. doi: 10.1016/0968-0004(92)90314-y. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Taylor P., Lappi S. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry. 1975 May 6;14(9):1989–1997. doi: 10.1021/bi00680a029. [DOI] [PubMed] [Google Scholar]
- Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
- WILSON I. B., ALEXANDER J. Acetylcholinesterase: reversible inhibitors, substrate inhibition. J Biol Chem. 1962 Apr;237:1323–1326. [PubMed] [Google Scholar]