Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Aug 1;301(Pt 3):855–862. doi: 10.1042/bj3010855

Occurrence of two molecular forms of human acid sphingomyelinase.

K Ferlinz 1, R Hurwitz 1, G Vielhaber 1, K Suzuki 1, K Sandhoff 1
PMCID: PMC1137065  PMID: 8053910

Abstract

Human acid sphingomyelinase (ASM) hydrolyses sphingomyelin to ceramide and phosphocholine. Metabolic studies on COS-1 cells transfected with ASM cDNA revealed the occurrence of an enzymically inactive precursor which is differentially processed to two predominant native glycoprotein forms: a 70 kDa polypeptide corresponding to human urinary protein and a 57 kDa form. Formation of these potentially active forms was shown to be restricted to distinct compartments. Maturation of the ASM precursor to a predominant 70 kDa form occurs exclusively inside acidic organelles, whereas variable amounts of 57 kDa ASM are detectable immediately after biosynthesis. Metabolic labelling of transfected COS-1 cells with [32P]Pi further suggests that this form obviously does not carry oligomannosylphosphate residues, in contrast with the mature lysosomal ASM. In order to verify that this early form of active ASM results from co-post-translational proteolysis of the ASM precursor and not from the use of different translation-initiation sites on the ASM mRNA, appropriate 5'-mutagenized cDNA constructs were transiently expressed. These results clearly indicate that the first potential in-frame AUG is exclusively used for translation initiation in vivo and that deletion of the proposed signal sequence for endoplasmic reticulum import completely eliminates the ability of the translation product to enter the vacuolar apparatus. As there are two different subcellular sites of maturation of the ASM precursor, and intracellular targeting of the two processed forms appears to be different, the two ASM proteins may contribute to distinct physiological functions.

Full text

PDF
855

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Callahan J. W., Shankaran P., Khalil M., Gerrie J. Sphingomyelinases in human tissues. IV. Purification of sphingomyelinase from human placenta and effect of Triton X-100. Can J Biochem. 1978 Sep;56(9):885–891. doi: 10.1139/o78-137. [DOI] [PubMed] [Google Scholar]
  2. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  3. Ferlinz K., Hurwitz R., Sandhoff K. Molecular basis of acid sphingomyelinase deficiency in a patient with Niemann-Pick disease type A. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1187–1191. doi: 10.1016/0006-291x(91)91697-b. [DOI] [PubMed] [Google Scholar]
  4. Freeman S. J., Davidson D. J., Callahan J. W. Solid-phase assay for the detection of low-abundance enzymes, and antibodies to enzymes in immune reactions, using acid sphingomyelinase as a model. Anal Biochem. 1984 Aug 15;141(1):248–252. doi: 10.1016/0003-2697(84)90453-6. [DOI] [PubMed] [Google Scholar]
  5. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  6. Jobb E. A., Callahan J. W. Biosynthesis of sphingomyelinase in normal and Niemann-Pick fibroblasts. Biochem Cell Biol. 1989 Nov-Dec;67(11-12):801–807. [PubMed] [Google Scholar]
  7. Jones C. S., Shankaran P., Callahan J. W. Purification of sphingomyelinase to apparent homogeneity by using hydrophobic chromatography. Biochem J. 1981 May 1;195(2):373–382. doi: 10.1042/bj1950373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaufman R. J. Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc Natl Acad Sci U S A. 1985 Feb;82(3):689–693. doi: 10.1073/pnas.82.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levran O., Desnick R. J., Schuchman E. H. Niemann-Pick disease: a frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3748–3752. doi: 10.1073/pnas.88.9.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levran O., Desnick R. J., Schuchman E. H. Niemann-Pick type B disease. Identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in type A and B patients. J Clin Invest. 1991 Sep;88(3):806–810. doi: 10.1172/JCI115380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maehira F., Takaesu I. Dot immunodetection for sphingomyelinase with monoclonal antibody. Biochem Med Metab Biol. 1987 Feb;37(1):5–15. doi: 10.1016/0885-4505(87)90003-x. [DOI] [PubMed] [Google Scholar]
  14. Mathias S., Dressler K. A., Kolesnick R. N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10009–10013. doi: 10.1073/pnas.88.22.10009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neote K., Brown C. A., Mahuran D. J., Gravel R. A. Translation initiation in the HEXB gene encoding the beta-subunit of human beta-hexosaminidase. J Biol Chem. 1990 Dec 5;265(34):20799–20806. [PubMed] [Google Scholar]
  16. Quintern L. E., Schuchman E. H., Levran O., Suchi M., Ferlinz K., Reinke H., Sandhoff K., Desnick R. J. Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. EMBO J. 1989 Sep;8(9):2469–2473. doi: 10.1002/j.1460-2075.1989.tb08382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quintern L. E., Weitz G., Nehrkorn H., Tager J. M., Schram A. W., Sandhoff K. Acid sphingomyelinase from human urine: purification and characterization. Biochim Biophys Acta. 1987 Dec 14;922(3):323–336. doi: 10.1016/0005-2760(87)90055-5. [DOI] [PubMed] [Google Scholar]
  18. Quintern L. E., Zenk T. S., Sandhoff K. The urine from patients with peritonitis as a rich source for purifying human acid sphingomyelinase and other lysosomal enzymes. Biochim Biophys Acta. 1989 Jun 8;1003(2):121–124. doi: 10.1016/0005-2760(89)90244-0. [DOI] [PubMed] [Google Scholar]
  19. Quon D. V., Proia R. L., Fowler A. V., Bleibaum J., Neufeld E. F. Proteolytic processing of the beta-subunit of the lysosomal enzyme, beta-hexosaminidase, in normal human fibroblasts. J Biol Chem. 1989 Feb 25;264(6):3380–3384. [PubMed] [Google Scholar]
  20. Rousson R., Bonnet J., Louisot P., Vanier M. T. Presence of immunoreactive material in Niemann-Pick type A placenta using anti-sphingomyelinase rabbit gammaglobulins. Biochim Biophys Acta. 1987 Jun 22;924(3):502–508. doi: 10.1016/0304-4165(87)90166-8. [DOI] [PubMed] [Google Scholar]
  21. Rousson R., Parvaz P., Bonnet J., Rodriguez-Lafrasse C., Louisot P., Vanier M. T. Preparation of an anti-acid sphingomyelinase monoclonal antibody for the quantitative determination and polypeptide analysis of lysosomal sphingomyelinase in fibroblasts from normal and Niemann-Pick type A patients. J Immunol Methods. 1993 Apr 2;160(2):199–206. doi: 10.1016/0022-1759(93)90178-a. [DOI] [PubMed] [Google Scholar]
  22. Rousson R., Vanier M. T., Louisot P. Chromatofocusing of purified placental sphingomyelinase. Biochimie. 1983 Feb;65(2):115–120. doi: 10.1016/s0300-9084(83)80181-3. [DOI] [PubMed] [Google Scholar]
  23. Sakuragawa N. Acid sphingomyelinase of human placenta: purification, properties, and 125iodine labeling. J Biochem. 1982 Sep;92(3):637–646. doi: 10.1093/oxfordjournals.jbchem.a133974. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schnabel D., Schröder M., Fürst W., Klein A., Hurwitz R., Zenk T., Weber J., Harzer K., Paton B. C., Poulos A. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem. 1992 Feb 15;267(5):3312–3315. [PubMed] [Google Scholar]
  26. Schuchman E. H., Levran O., Pereira L. V., Desnick R. J. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics. 1992 Feb;12(2):197–205. doi: 10.1016/0888-7543(92)90366-z. [DOI] [PubMed] [Google Scholar]
  27. Schuchman E. H., Suchi M., Takahashi T., Sandhoff K., Desnick R. J. Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem. 1991 May 5;266(13):8531–8539. [PubMed] [Google Scholar]
  28. Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992 Nov 27;71(5):765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  29. Sonderfeld-Fresko S., Proia R. L. Synthesis and assembly of a catalytically active lysosomal enzyme, beta-hexosaminidase B, in a cell-free system. J Biol Chem. 1988 Sep 15;263(26):13463–13469. [PubMed] [Google Scholar]
  30. Sorge J. A., West C., Kuhl W., Treger L., Beutler E. The human glucocerebrosidase gene has two functional ATG initiator codons. Am J Hum Genet. 1987 Dec;41(6):1016–1024. [PMC free article] [PubMed] [Google Scholar]
  31. Takahashi T., Suchi M., Desnick R. J., Takada G., Schuchman E. H. Identification and expression of five mutations in the human acid sphingomyelinase gene causing types A and B Niemann-Pick disease. Molecular evidence for genetic heterogeneity in the neuronopathic and non-neuronopathic forms. J Biol Chem. 1992 Jun 25;267(18):12552–12558. [PubMed] [Google Scholar]
  32. Vanier M. T., Ferlinz K., Rousson R., Duthel S., Louisot P., Sandhoff K., Suzuki K. Deletion of arginine (608) in acid sphingomyelinase is the prevalent mutation among Niemann-Pick disease type B patients from northern Africa. Hum Genet. 1993 Oct;92(4):325–330. doi: 10.1007/BF01247328. [DOI] [PubMed] [Google Scholar]
  33. Weitz G., Driessen M., Brouwer-Kelder E. M., Sandhoff K., Barranger J. A., Tager J. M., Schram A. W. Soluble sphingomyelinase from human urine as antigen for obtaining anti-sphingomyelinase antibodies. Biochim Biophys Acta. 1985 Jan 28;838(1):92–97. doi: 10.1016/0304-4165(85)90254-5. [DOI] [PubMed] [Google Scholar]
  34. Yamanaka T., Suzuki K. Acid sphingomyelinase of human brain: purification to homogeneity. J Neurochem. 1982 Jun;38(6):1753–1764. doi: 10.1111/j.1471-4159.1982.tb06659.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES