Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jul 15;301(Pt 2):503–508. doi: 10.1042/bj3010503

Zinc and barium inhibit the phospholipase A2 from Naja naja atra by different mechanisms.

M Mezna 1, T Ahmad 1, S Chettibi 1, D Drainas 1, A J Lawrence 1
PMCID: PMC1137109  PMID: 8042995

Abstract

The mode of inhibition of the phospholipase A2 (PLA2) enzyme from the Chinese cobra (Naja naja atra) by Zn2+ is qualitatively different from inhibition by Ba2+. Inhibition by Ba2+ shows the kinetic characteristics of a conventional competitive inhibitor acting to displace Ca2+ from a single essential site, but Zn2+ has the paradoxical property of being more inhibitory at high than at low Ca2+ concentration. Kinetic analysis of the Ca(2+)-dependence of enzymic activity shows a bimodal response, indicating the presence of two Ca(2+)-binding sites with affinities of 2.7 microM and 125 microM respectively, and we propose that these can be identified with the two Ca(2+)-binding sites revealed by crystallographic analysis [White, Scott, Otwinowski, Gleb and Sigler (1990) Science 250, 1560-1563]. The results are consistent with the model that the enzyme is activated by two Ca2+ ions, one that is essential and can be displaced by Ba2+, and one that modulates the activity by a further 5-10-fold and which can be displaced by Zn2+. An alternative model is also presented in which the modulating Zn(2+)-binding site is a phenomenon of the lipid/water interface.

Full text

PDF
503

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad T., Lawrence A. J. Purification and activation of phospholipase A2 isoforms from Naja mossambica mossambica (spitting cobra) venom. Toxicon. 1993 Oct;31(10):1279–1291. doi: 10.1016/0041-0101(93)90401-4. [DOI] [PubMed] [Google Scholar]
  2. Andersson T., Drakenberg T., Forsén S., Wieloch T., Lindström M. Calcium binding to porcine pancreatic prophospholipase A2 studied by 43Ca NMR. FEBS Lett. 1981 Jan 12;123(1):115–117. doi: 10.1016/0014-5793(81)80032-4. [DOI] [PubMed] [Google Scholar]
  3. Chettibi S., Lawrence A. High resolution of honey bee (Apis mellifera) venom peptides by propionic acid/urea polyacrylamide gel electrophoresis after ethanol precipitation. Toxicon. 1989;27(7):781–787. doi: 10.1016/0041-0101(89)90045-7. [DOI] [PubMed] [Google Scholar]
  4. Dijkstra B. W., Drenth J., Kalk K. H. Active site and catalytic mechanism of phospholipase A2. Nature. 1981 Feb 12;289(5798):604–606. doi: 10.1038/289604a0. [DOI] [PubMed] [Google Scholar]
  5. Donné-Op den Kelder G. M., de Haas G. H., Egmond M. R. Localization of the second calcium ion binding site in porcine and equine phospholipase A2. Biochemistry. 1983 May 10;22(10):2470–2478. doi: 10.1021/bi00279a025. [DOI] [PubMed] [Google Scholar]
  6. Drainas D., Drainas C. A conductimetric method for assaying asparaginase activity in Aspergillus nidulans. Eur J Biochem. 1985 Sep 16;151(3):591–593. doi: 10.1111/j.1432-1033.1985.tb09144.x. [DOI] [PubMed] [Google Scholar]
  7. Lawrence A. J. Conductimetric enzyme assays. Eur J Biochem. 1971 Jan;18(2):221–225. doi: 10.1111/j.1432-1033.1971.tb01234.x. [DOI] [PubMed] [Google Scholar]
  8. Lawrence A. J., Moores G. R. Conductimetry in enzyme studies. Eur J Biochem. 1972 Jan 21;24(3):538–546. doi: 10.1111/j.1432-1033.1972.tb19716.x. [DOI] [PubMed] [Google Scholar]
  9. Lawrence A. J., Moores G. R., Steele J. A conductimetric study of erythrocyte lysis by tysolecithin and linoleic acid. Eur J Biochem. 1974 Oct 1;48(1):277–286. doi: 10.1111/j.1432-1033.1974.tb03766.x. [DOI] [PubMed] [Google Scholar]
  10. Mezna M., Lawrence A. J. Conductimetric assays for the hydrolase and transferase activities of phospholipase D enzymes. Anal Biochem. 1994 May 1;218(2):370–376. doi: 10.1006/abio.1994.1194. [DOI] [PubMed] [Google Scholar]
  11. Patel K. M., Morrisett J. D., Sparrow J. T. A convenient synthesis of phosphatidylcholines: acylation of sn-glycero-3-phosphocholine with fatty acid anhydride and 4-pyrrolidinopyridine. J Lipid Res. 1979 Jul;20(5):674–677. [PubMed] [Google Scholar]
  12. Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tsai T. C., Hart J., Jiang R. T., Bruzik K., Tsai M. D. Phospholipids chiral at phosphorus. Use of chiral thiophosphatidylcholine to study the metal-binding properties of bee venom phospholipase A2. Biochemistry. 1985 Jun 18;24(13):3180–3188. doi: 10.1021/bi00334a016. [DOI] [PubMed] [Google Scholar]
  14. Wells M. A. A kinetic study of the phospholipase A 2 (Crotalus adamanteus) catalyzed hydrolysis of 1,2-dibutyryl-sn-glycero-3-phosphorylcholine. Biochemistry. 1972 Mar 14;11(6):1030–1041. doi: 10.1021/bi00756a013. [DOI] [PubMed] [Google Scholar]
  15. Wells M. A. Effect of pH on the kinetic and spectral properties of Crotalus adamanteu phospholipase A2 in H2O and D2O. Biochemistry. 1974 May 21;13(11):2265–2268. doi: 10.1021/bi00708a004. [DOI] [PubMed] [Google Scholar]
  16. Wells M. A. Spectral perturbations of Crotalus adamanteus phospholipase A 2 induced by divalent cation binding. Biochemistry. 1973 Mar 13;12(6):1080–1085. doi: 10.1021/bi00730a010. [DOI] [PubMed] [Google Scholar]
  17. Wells M. A. The mechanism of interfacial activation of phospholipase A2. Biochemistry. 1974 May 21;13(11):2248–2257. doi: 10.1021/bi00708a002. [DOI] [PubMed] [Google Scholar]
  18. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  19. van den Bergh C. J., Bekkers A. C., Verheij H. M., de Haas G. H. Glutamic acid 71 and aspartic acid 66 control the binding of the second calcium ion in porcine pancreatic phospholipase A2. Eur J Biochem. 1989 Jun 15;182(2):307–313. doi: 10.1111/j.1432-1033.1989.tb14831.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES