Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Sep 15;302(Pt 3):753–757. doi: 10.1042/bj3020753

Formation of the L-cysteine-glyoxylate adduct is the mechanism by which L-cysteine decreases oxalate production from glycollate in rat hepatocytes.

P W Baker 1, R Bais 1, A M Rofe 1
PMCID: PMC1137295  PMID: 7945199

Abstract

Formation of thiazolidine-2,4-dicarboxylic acid, the L-cysteine-glyoxylate adduct, is the putative mechanism by which L-cysteine reduces hepatic oxalate production from glycollate [Bais, Rofe and Conyers (1991) J. Urol. 145, 1302-1305]. This was investigated in isolated rat hepatocytes by the simultaneous measurement of both adduct and oxalate formation. Different diastereoisomeric ratios of cis- and trans-adduct were prepared and characterized to provide both standard material for the enzymic analysis of adduct in hepatocyte supernatants and to investigate the stability and configuration of the adduct under physiological conditions. In the absence of L-cysteine, hepatocytes produced oxalate from 2 mM glycollate at a rate of 822 +/- 42 nmol/30 min per 10(7) cells. The addition of L-cysteine to the incubation medium at 1.0, 2.5 and 5.0 mM lowered oxalate production by 14 +/- 2, 25 +/- 3 (P < 0.05) and 38 +/- 3% (P < 0.01) respectively. These reductions were accompanied by almost stoichiometric increases in the levels of the adduct: 162 +/- 6, 264 +/- 27 and 363 +/- 30 nmol/30 min per 10(7) cells. Adduct formation is therefore confirmed as the primary mechanism by which L-cysteine decreases oxalate production from glycollate. As urinary oxalate excretion is a prime risk factor in the formation of calcium oxalate stones, any reduction in endogenous oxalate production is of clinical significance in the prevention of this formation.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alary J., Carrera G., Escrieut C., Periquet A. Determination of 2-carboxy thiazolidine-4-carboxylic acid in biological fluids by ion-exchange chromatography. J Pharm Biomed Anal. 1989;7(6):715–723. doi: 10.1016/0731-7085(89)80116-5. [DOI] [PubMed] [Google Scholar]
  2. Bais R., Rofe A. M., Conyers R. A. Inhibition of endogenous oxalate production: biochemical considerations of the roles of glycollate oxidase and lactate dehydrogenase. Clin Sci (Lond) 1989 Mar;76(3):303–309. doi: 10.1042/cs0760303. [DOI] [PubMed] [Google Scholar]
  3. Bais R., Rofe A. M., Conyers R. A. Investigations into the effect of glyoxylate decarboxylation and transamination on oxalate formation in the rat. Nephron. 1991;57(4):460–469. doi: 10.1159/000186350. [DOI] [PubMed] [Google Scholar]
  4. Bais R., Rofe A. M., Conyers R. A. The inhibition of metabolic oxalate production by sulfhydryl compounds. J Urol. 1991 Jun;145(6):1302–1305. doi: 10.1016/s0022-5347(17)38619-6. [DOI] [PubMed] [Google Scholar]
  5. Bringmann G., Feineis D., Hesselmann C., Schneider S., Koob M., Henschler D. A "chemical" concept for the therapy of glyoxylate-induced oxalurias (1). Life Sci. 1992;50(21):1597–1605. doi: 10.1016/0024-3205(92)90445-u. [DOI] [PubMed] [Google Scholar]
  6. Burns C. L., Main D. E., Buckthal D. J., Hamilton G. A. Thiazolidine-2-carboxylate derivatives formed from glyoxylate and L-cysteine or L-cysteinylglycine as possible physiological substrates for D-aspartate oxidase. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1039–1045. doi: 10.1016/0006-291x(84)91388-3. [DOI] [PubMed] [Google Scholar]
  7. Dixon M., Kenworthy P. D-aspartate oxidase of kidney. Biochim Biophys Acta. 1967 Sep 12;146(1):54–76. doi: 10.1016/0005-2744(67)90073-3. [DOI] [PubMed] [Google Scholar]
  8. Fry D. W., Richardson K. E. Isolation and characterization of glycolic acid oxidase from human liver. Biochim Biophys Acta. 1979 May 10;568(1):135–144. doi: 10.1016/0005-2744(79)90281-x. [DOI] [PubMed] [Google Scholar]
  9. Hamilton G. A. Peroxisomal oxidases and suggestions for the mechanism of action of insulin and other hormones. Adv Enzymol Relat Areas Mol Biol. 1985;57:85–178. doi: 10.1002/9780470123034.ch2. [DOI] [PubMed] [Google Scholar]
  10. Nasu S., Wicks F. D., Gholson R. K. The mammalian enzyme which replaces B protein of E. coli quinolinate synthetase is D-aspartate oxidase. Biochim Biophys Acta. 1982 Jun 4;704(2):240–252. doi: 10.1016/0167-4838(82)90152-2. [DOI] [PubMed] [Google Scholar]
  11. O'fallon J. V., Brosemer R. W. Cellular localization of alpha-ketoglutarate: glyoxylate carboligase in rat tissues. Biochim Biophys Acta. 1977 Oct 25;499(3):321–328. doi: 10.1016/0304-4165(77)90063-0. [DOI] [PubMed] [Google Scholar]
  12. Rofe A. M., Chalmers A. H., Edwards J. B. [14C]oxalate synthesis from [U-14C]glyoxylate and [1-14C]glycollate in isolated rat hepatocytes. Biochem Med. 1976 Dec;16(3):277–283. doi: 10.1016/0006-2944(76)90033-8. [DOI] [PubMed] [Google Scholar]
  13. Rowsell E. V., Snell K., Carnie J. A., Rowsell K. V. The subcellular distribution of rat liver L-alanine-glyoxylate aminotransferase in relation to a pathway for glucose formation involving glyoxylate. Biochem J. 1972 Mar;127(1):155–165. doi: 10.1042/bj1270155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schuman M., Massey V. Purification and characterization of glycolic acid oxidase from pig liver. Biochim Biophys Acta. 1971 Mar 10;227(3):500–520. doi: 10.1016/0005-2744(71)90003-9. [DOI] [PubMed] [Google Scholar]
  15. Yanagawa M., Maeda-Nakai E., Yamakawa K., Yamamoto I., Kawamura J., Tada S., Ichiyama A. The formation of oxalate from glycolate in rat and human liver. Biochim Biophys Acta. 1990 Oct 12;1036(1):24–33. doi: 10.1016/0304-4165(90)90209-f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES