Abstract
The aim of this study was to investigate the mechanism(s) underlying the thyroid-hormone (L-tri-iodothyronine, T3)-induced elevation of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase (SERCA1) levels in L6 myotubes and the potentiating effect of insulin-like growth factor-I (IGF-I) [Muller, van Hardeveld, Simonides and van Rijn (1991) Biochem. J. 275, 35-40]. T3 increased the SERCA1 protein level (per microgram of DNA) by 160%. The concomitant increase in the SERCA1 mRNA level was somewhat higher (240%). IGF-I also increased SERCA1 protein (110%) and mRNA levels (50%), whereas IGF-I + T3 increased SERCA1 protein and mRNA levels by 410% and 380% respectively. These SERCA1 mRNA analyses show that the more-than-additive action of T3 and IGF-I on SERCA1 expression is, at least in part, pre-translational in nature. Further studies showed that the half-life of SERCA1 protein in L6 cells (17.5 h) was not altered by T3. In contrast, IGF-I prolonged the half-life of SERCA1 protein 1.5-1.9-fold, which may contribute to the disproportional increase in SERCA1 protein content compared with mRNA by IGF-I. Measurements of SERCA1 mRNA half-life (as determined by actinomycin D chase) showed no difference from the control values (15.5 h) in the presence of T3 or IGF-I alone. When T3 and IGF-I were both present, the SERCA1 mRNA half-life was prolonged 2-fold. No significant effects of T3 and IGF-I were observed on the half-life of total protein (37.4 h) and total RNA (37.0 h). The absence of an effect of T3 on SERCA1 protein and mRNA stability, when it was present alone, suggested transcriptional regulation, which was confirmed by nuclear run-on experiments, showing a 3-fold increase in transcription frequency of the SERCA1 gene by T3. We conclude that the synergistic stimulating effects of T3 and IGF-I on SERCA1 expression are the result of both transcriptional and post-transcriptional regulation. T3 acts primarily at the transcriptional level by increasing the transcription frequency of the SERCA1 gene, whereas IGF-I seems to act predominantly at post-transcriptional levels by enhancing SERCA1 protein and mRNA stability, the latter, however, only in the presence of T3.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard F. J., Read L. C., Francis G. L., Bagley C. J., Wallace J. C. Binding properties and biological potencies of insulin-like growth factors in L6 myoblasts. Biochem J. 1986 Jan 1;233(1):223–230. doi: 10.1042/bj2330223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brawerman G. Determinants of messenger RNA stability. Cell. 1987 Jan 16;48(1):5–6. doi: 10.1016/0092-8674(87)90346-1. [DOI] [PubMed] [Google Scholar]
- Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
- Brown J. G., Bates P. C., Holliday M. A., Millward D. J. Thyroid hormones and muscle protein turnover. The effect of thyroid-hormone deficiency and replacement in thryoidectomized and hypophysectomized rats. Biochem J. 1981 Mar 15;194(3):771–782. doi: 10.1042/bj1940771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. G., Millward D. J. Dose response of protein turnover in rat skeletal muscle to triiodothyronine treatment. Biochim Biophys Acta. 1983 May 25;757(2):182–190. doi: 10.1016/0304-4165(83)90107-1. [DOI] [PubMed] [Google Scholar]
- Burstein P. J., Draznin B., Johnson C. J., Schalch D. S. The effect of hypothyroidism on growth, serum growth hormone, the growth hormone-dependent somatomedin, insulin-like growth factor, and its carrier protein in rats. Endocrinology. 1979 Apr;104(4):1107–1111. doi: 10.1210/endo-104-4-1107. [DOI] [PubMed] [Google Scholar]
- Cohick W. S., Clemmons D. R. The insulin-like growth factors. Annu Rev Physiol. 1993;55:131–153. doi: 10.1146/annurev.ph.55.030193.001023. [DOI] [PubMed] [Google Scholar]
- Czech M. P. Signal transmission by the insulin-like growth factors. Cell. 1989 Oct 20;59(2):235–238. doi: 10.1016/0092-8674(89)90281-x. [DOI] [PubMed] [Google Scholar]
- Diamond D. J., Goodman H. M. Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine. Transcriptional rate and mRNA stability changes in pituitary tumor cells. J Mol Biol. 1985 Jan 5;181(1):41–62. doi: 10.1016/0022-2836(85)90323-7. [DOI] [PubMed] [Google Scholar]
- Dulhunty A. F. The rate of tetanic relaxation is correlated with the density of calcium ATPase in the terminal cisternae of thyrotoxic skeletal muscle. Pflugers Arch. 1990 Jan;415(4):433–439. doi: 10.1007/BF00373620. [DOI] [PubMed] [Google Scholar]
- Everts M. E., van Hardeveld C., Ter Keurs H. E., Kassenaar A. A. Force development and metabolism in skeletal muscle of euthyroid and hypothyroid rats. Acta Endocrinol (Copenh) 1981 Jun;97(2):221–225. doi: 10.1530/acta.0.0970221. [DOI] [PubMed] [Google Scholar]
- Flaim K. E., Li J. B., Jefferson L. S. Effects of thyroxine on protein turnover in rat skeletal muscle. Am J Physiol. 1978 Aug;235(2):E231–E236. doi: 10.1152/ajpendo.1978.235.2.E231. [DOI] [PubMed] [Google Scholar]
- García-Jimenez C., Hernández A., Obregón M. J., Santisteban P. Malic enzyme gene expression in differentiating brown adipocytes: regulation by insulin and triiodothyronine. Endocrinology. 1993 Apr;132(4):1537–1543. doi: 10.1210/endo.132.4.8462451. [DOI] [PubMed] [Google Scholar]
- Groudine M., Peretz M., Weintraub H. Transcriptional regulation of hemoglobin switching in chicken embryos. Mol Cell Biol. 1981 Mar;1(3):281–288. doi: 10.1128/mcb.1.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulve E. A., Dice J. F. Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J. 1989 Jun 1;260(2):377–387. doi: 10.1042/bj2600377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hargrove J. L., Schmidt F. H. The role of mRNA and protein stability in gene expression. FASEB J. 1989 Oct;3(12):2360–2370. doi: 10.1096/fasebj.3.12.2676679. [DOI] [PubMed] [Google Scholar]
- Holland P. C., MacLennan D. H. Assembly of the sarcoplasmic reticulum. Biosynthesis of the adenosine triphosphatase in rat skeletal muscle cell culture. J Biol Chem. 1976 Apr 10;251(7):2030–2036. [PubMed] [Google Scholar]
- Humbel R. E. Insulin-like growth factors I and II. Eur J Biochem. 1990 Jul 5;190(3):445–462. doi: 10.1111/j.1432-1033.1990.tb15595.x. [DOI] [PubMed] [Google Scholar]
- Kim D. H., Witzmann F. A., Fitts R. H. Effect of thyrotoxicosis on sarcoplasmic reticulum in rat skeletal muscle. Am J Physiol. 1982 Sep;243(3):C151–C155. doi: 10.1152/ajpcell.1982.243.3.C151. [DOI] [PubMed] [Google Scholar]
- King R. A., Smith R. M., Meller D. J., Dahlenburg G. W., Lineham J. D. Effect of growth hormone on growth and myelination in the neonatal hypothyroid rat. J Endocrinol. 1988 Oct;119(1):117–125. doi: 10.1677/joe.0.1190117. [DOI] [PubMed] [Google Scholar]
- Krane I. M., Spindel E. R., Chin W. W. Thyroid hormone decreases the stability and the poly(A) tract length of rat thyrotropin beta-subunit messenger RNA. Mol Endocrinol. 1991 Apr;5(4):469–475. doi: 10.1210/mend-5-4-469. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science. 1970 Oct 23;170(3956):447–449. doi: 10.1126/science.170.3956.447. [DOI] [PubMed] [Google Scholar]
- Linial M., Gunderson N., Groudine M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science. 1985 Dec 6;230(4730):1126–1132. doi: 10.1126/science.2999973. [DOI] [PubMed] [Google Scholar]
- Martonosi A. The development of sarcoplasmic reticulum membranes. Annu Rev Physiol. 1982;44:337–355. doi: 10.1146/annurev.ph.44.030182.002005. [DOI] [PubMed] [Google Scholar]
- Muller A., van Hardeveld C., Simonides W. S., van Rijn J. Ca2+ homeostasis and fast-type sarcoplasmic reticulum Ca(2+)-ATPase expression in L6 muscle cells. Role of thyroid hormone. Biochem J. 1992 May 1;283(Pt 3):713–718. doi: 10.1042/bj2830713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller A., van Hardeveld C., Simonides W. S., van Rijn J. The elevation of sarcoplasmic reticulum Ca2(+)-ATPase levels by thyroid hormone in the L6 muscle cell line is potentiated by insulin-like growth factor-I. Biochem J. 1991 Apr 1;275(Pt 1):35–40. doi: 10.1042/bj2750035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen D. A., Shapiro D. J. Insights into hormonal control of messenger RNA stability. Mol Endocrinol. 1990 Jul;4(7):953–957. doi: 10.1210/mend-4-7-953. [DOI] [PubMed] [Google Scholar]
- Näntö-Salonen K., Glasscock G. F., Rosenfeld R. G. The effects of thyroid hormone on insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) expression in the neonatal rat: prolonged high expression of IGFBP-2 in methimazole-induced congenital hypothyroidism. Endocrinology. 1991 Nov;129(5):2563–2570. doi: 10.1210/endo-129-5-2563. [DOI] [PubMed] [Google Scholar]
- Pontecorvi A., Tata J. R., Phyillaier M., Robbins J. Selective degradation of mRNA: the role of short-lived proteins in differential destabilization of insulin-induced creatine phosphokinase and myosin heavy chain mRNAs during rat skeletal muscle L6 cell differentiation. EMBO J. 1988 May;7(5):1489–1495. doi: 10.1002/j.1460-2075.1988.tb02967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roeder R. A., Hossner K. L., Sasser R. G., Gunn J. M. Regulation of protein turnover by recombinant human insulin-like growth factor-I in L6 myotube cultures. Horm Metab Res. 1988 Nov;20(11):698–700. doi: 10.1055/s-2007-1010920. [DOI] [PubMed] [Google Scholar]
- Rohrer D. K., Hartong R., Dillmann W. H. Influence of thyroid hormone and retinoic acid on slow sarcoplasmic reticulum Ca2+ ATPase and myosin heavy chain alpha gene expression in cardiac myocytes. Delineation of cis-active DNA elements that confer responsiveness to thyroid hormone but not to retinoic acid. J Biol Chem. 1991 May 5;266(13):8638–8646. [PubMed] [Google Scholar]
- Samuels H. H., Stanley F., Casanova J. Depletion of L-3,5,3'-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology. 1979 Jul;105(1):80–85. doi: 10.1210/endo-105-1-80. [DOI] [PubMed] [Google Scholar]
- Santisteban P., Acebrón A., Polycarpou-Schwarz M., Di Lauro R. Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol Endocrinol. 1992 Aug;6(8):1310–1317. doi: 10.1210/mend.6.8.1406708. [DOI] [PubMed] [Google Scholar]
- Simonides W. S., van Hardeveld C. Effects of the thyroid status on the sarcoplasmic reticulum in slow skeletal muscle of the rat. Cell Calcium. 1986 Jun;7(3):147–160. doi: 10.1016/0143-4160(86)90018-7. [DOI] [PubMed] [Google Scholar]
- Simonides W. S., van Hardeveld C. The effect of hypothyroidism on sarcoplasmic reticulum in fast-twitch muscle of the rat. Biochim Biophys Acta. 1985 Feb 21;844(2):129–141. doi: 10.1016/0167-4889(85)90083-7. [DOI] [PubMed] [Google Scholar]
- Simonides W. S., van Hardeveld C. The postnatal development of sarcoplasmic reticulum Ca2+ transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Endocrinology. 1989 Mar;124(3):1145–1152. doi: 10.1210/endo-124-3-1145. [DOI] [PubMed] [Google Scholar]
- Simonides W. S., van der Linden G. C., van Hardeveld C. Thyroid hormone differentially affects mRNA levels of Ca-ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscle. FEBS Lett. 1990 Nov 12;274(1-2):73–76. doi: 10.1016/0014-5793(90)81332-i. [DOI] [PubMed] [Google Scholar]
- Song M. K., Dozin B., Grieco D., Rall J. E., Nikodem V. M. Transcriptional activation and stabilization of malic enzyme mRNA precursor by thyroid hormone. J Biol Chem. 1988 Dec 5;263(34):17970–17974. [PubMed] [Google Scholar]
- Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashita S., Melmed S. Insulinlike growth factor I regulation of growth hormone gene transcription in primary rat pituitary cells. J Clin Invest. 1987 Feb;79(2):449–452. doi: 10.1172/JCI112832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeman R. J., Bernstein P. L., Ludemann R., Etlinger J. D. Regulation of Ca2+-dependent protein turnover in skeletal muscle by thyroxine. Biochem J. 1986 Nov 15;240(1):269–272. doi: 10.1042/bj2400269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zubrzycka-Gaarn E., Campbell K. P., MacLennan D. H., Jorgensen A. O. Biosynthesis of intrinsic sarcoplasmic reticulum proteins during differentiation of the myogenic cell line L6. J Biol Chem. 1983 Apr 10;258(7):4576–4581. [PubMed] [Google Scholar]
- Zubrzycka-Gaarn E., MacDonald G., Phillips L., Jorgensen A. O., MacLennan D. H. Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high-affinity Ca2+ binding site. J Bioenerg Biomembr. 1984 Dec;16(5-6):441–464. doi: 10.1007/BF00743238. [DOI] [PubMed] [Google Scholar]
- Zumstein P., Stiles C. D. Molecular cloning of gene sequences that are regulated by insulin-like growth factor I. J Biol Chem. 1987 Aug 15;262(23):11252–11260. [PubMed] [Google Scholar]