Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 15;303(Pt 2):527–530. doi: 10.1042/bj3030527

A study on the functional subunits of phospholipases A2 by enzyme immobilization.

J P Ferreira 1, R Sasisekharan 1, O Louie 1, R Langer 1
PMCID: PMC1137359  PMID: 7980413

Abstract

Pancreatic and venom phospholipases A2 have complex and distinct oligomerization behaviour. Pancreatic enzymes are monomeric in solution, but their quaternary structure at interfaces is unknown. On the other hand, certain crotalid venom phospholipases A2 are dimeric in solution, and different reports have proposed either the monomer or the dimer as the catalytically functional subunit. In this study, enzyme immobilization was used as a tool for determining the functional subunits of these enzymes. The dimeric Crotalus atrox phospholipase A2 was covalently attached to agarose beads, via either the amine or the carboxylic groups of the protein. In the first case immobilization led to an 80% loss of activity as compared with the soluble form, and measured by using micellar diheptanoylphosphocholine. Inclusion of micellar protectants in the coupling media did not improve the activity. Enzyme immobilized via carboxylic groups was 2-3-fold more active than the amine-coupled form. In a second approach, Crotalus atrox enzyme was immobilized with single-subunit attachment. The removal, with denaturating washes, of the non-covalently bound units involved in monomer-monomer interactions, caused a large decrease in specific activity of the support-bound enzyme. This suggests the dimeric form as the fully active one. Similar procedures were also carried out with pig pancreatic and Naja naja phospholipases A2. The results indicated that these enzymes are active as monomers.

Full text

PDF
527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunie S., Bolin J., Gewirth D., Sigler P. B. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. J Biol Chem. 1985 Aug 15;260(17):9742–9749. [PubMed] [Google Scholar]
  2. Chan W. W. Immobilized subunits. Methods Enzymol. 1976;44:491–503. doi: 10.1016/s0076-6879(76)44035-1. [DOI] [PubMed] [Google Scholar]
  3. Cho W., Tomasselli A. G., Heinrikson R. L., Kézdy F. J. The chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate. J Biol Chem. 1988 Aug 15;263(23):11237–11241. [PubMed] [Google Scholar]
  4. Donné-Op den Kelder G. M., Hille J. D., Dijkman R., de Haas G. H., Egmond M. R. Binding of porcine pancreatic phospholipase A2 to various micellar substrate analogues. Involvement of histidine-48 and aspartic acid-49 in the binding process. Biochemistry. 1981 Jul 7;20(14):4074–4078. doi: 10.1021/bi00517a020. [DOI] [PubMed] [Google Scholar]
  5. Ferreira J. P., Sasisekharan R., Louie O., Langer R. Influence of chemistry in immobilization of cobra venom phospholipase A2: implications as to mechanism. Biochemistry. 1993 Aug 17;32(32):8098–8102. doi: 10.1021/bi00083a007. [DOI] [PubMed] [Google Scholar]
  6. Hachimori Y., Wells M. A., Hanahan D. J. Observations on the phospholipase A 2 of Crotalus atrox. Molecular weight and other properties. Biochemistry. 1971 Oct 26;10(22):4084–4089. doi: 10.1021/bi00798a012. [DOI] [PubMed] [Google Scholar]
  7. Hazlett T. L., Deems R. A., Dennis E. A. Activation, aggregation, inhibition and the mechanism of phospholipase A2. Adv Exp Med Biol. 1990;279:49–64. doi: 10.1007/978-1-4613-0651-1_4. [DOI] [PubMed] [Google Scholar]
  8. Hazlett T. L., Dennis E. A. Lipid-induced aggregation of phospholipase A2: sucrose density gradient ultracentrifugation and crosslinking studies. Biochim Biophys Acta. 1988 Jul 1;961(1):22–29. doi: 10.1016/0005-2760(88)90126-9. [DOI] [PubMed] [Google Scholar]
  9. Hille J. D., Donné-Op den Kelder G. M., Sauve P., de Haas G. H., Egmond M. R. Physicochemical studies on the interaction of pancreatic phospholipase A2 with a micellar substrate analogue. Biochemistry. 1981 Jul 7;20(14):4068–4073. doi: 10.1021/bi00517a019. [DOI] [PubMed] [Google Scholar]
  10. Jain M. K., Ranadive G., Yu B. Z., Verheij H. M. Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry. 1991 Jul 23;30(29):7330–7340. doi: 10.1021/bi00243a038. [DOI] [PubMed] [Google Scholar]
  11. Keith C., Feldman D. S., Deganello S., Glick J., Ward K. B., Jones E. O., Sigler P. B. The 2.5 A crystal structure of a dimeric phospholipase A2 from the venom of Crotalus atrox. J Biol Chem. 1981 Aug 25;256(16):8602–8607. [PubMed] [Google Scholar]
  12. Kupferberg J. P., Yokoyama S., Kézdy F. J. The kinetics of the phospholipase A2-catalyzed hydrolysis of Egg phosphatidylcholine in unilamellar vesicles. Product inhibition and its relief by serum albumin. J Biol Chem. 1981 Jun 25;256(12):6274–6281. [PubMed] [Google Scholar]
  13. Labeque R., Mullon C. J., Ferreira J. P., Lees R. S., Langer R. Enzymatic modification of plasma low density lipoproteins in rabbits: a potential treatment for hypercholesterolemia. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3476–3480. doi: 10.1073/pnas.90.8.3476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Randolph A., Heinrikson R. L. Crotalus atrox phospholipase A2. Amino acid sequence and studies on the function of the NH2-terminal region. J Biol Chem. 1982 Mar 10;257(5):2155–2161. [PubMed] [Google Scholar]
  15. Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem. 1985 Sep 25;260(21):11627–11634. [PubMed] [Google Scholar]
  16. Roberts M. F., Deems R. A., Dennis E. A. Dual role of interfacial phospholipid in phospholipase A2 catalysis. Proc Natl Acad Sci U S A. 1977 May;74(5):1950–1954. doi: 10.1073/pnas.74.5.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shen B. W., Tsao F. H., Law H. J., Kézdy F. J. Kinetic study of the hydrolysis of lecithin monolayers by Crotalus adamanteus alpha-phospholipase A2. monomer--dimer equilibrium. J Am Chem Soc. 1975 Mar 5;97(5):1205–1208. doi: 10.1021/ja00838a040. [DOI] [PubMed] [Google Scholar]
  18. Staros J. V., Wright R. W., Swingle D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986 Jul;156(1):220–222. doi: 10.1016/0003-2697(86)90176-4. [DOI] [PubMed] [Google Scholar]
  19. Tomasselli A. G., Hui J., Fisher J., Zürcher-Neely H., Reardon I. M., Oriaku E., Kézdy F. J., Heinrikson R. L. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. J Biol Chem. 1989 Jun 15;264(17):10041–10047. [PubMed] [Google Scholar]
  20. Wells M. A. Evidence that the phospholipase A 2 of Crotalus adamanteus venom are dimers. Biochemistry. 1971 Oct 26;10(22):4074–4078. doi: 10.1021/bi00798a010. [DOI] [PubMed] [Google Scholar]
  21. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  22. de Araujo P. S., Rosseneu M. Y., Kremer J. M., van Zoelen E. J., de Haas G. H. Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles. Biochemistry. 1979 Feb 20;18(4):580–586. doi: 10.1021/bi00571a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES