Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 15;303(Pt 2):625–631. doi: 10.1042/bj3030625

Glucose modulates the binding activity of the beta-cell transcription factor IUF1 in a phosphorylation-dependent manner.

W M MacFarlane 1, M L Read 1, M Gilligan 1, I Bujalska 1, K Docherty 1
PMCID: PMC1137373  PMID: 7980425

Abstract

In the human insulin gene, three regulatory sequences upstream of the transcription start site at -77 (the CT1 box), -210 (the CT2 box), and -315 (the CT3 box) bind a beta-cell-specific transcription factor, IUF1. Recent studies have mapped a glucose response element to a CT-like sequence in the rat insulin I gene. The present study was therefore undertaken to ascertain the role of IUF1 in glucose-stimulated insulin gene transcription. IUF1-binding activity was measured by electrophoretic mobility shift assay using the CT2 box as probe. When freshly isolated rat islets of Langerhans were incubated in medium containing low concentrations (3 mM) of glucose IUF1 activity fell to undetectable levels within 6 h. In high (20 mM) glucose IUF1 activity remained constant over a 24 h period. The loss of IUF1 activity was reversible. Thus when islets were incubated for 4 h in low glucose and transferred to high glucose, IUF1 levels recovered within 15 min. This effect was dependent on glucose metabolism as it was inhibited by mannoheptulose. Incubation of islets for 4 h in low concentrations of glucose supplemented with phosphatase inhibitors prevented the fall in IUF1 activity. No recovery in IUF1 activity was observed when islets were treated for 4 h with low glucose and then for a further 1 h with low glucose and dibutyryl cyclic AMP, or forskolin, or the phorbol ester phorbol 12-myristate 13-acetate. These results demonstrate that the IUF1-binding activity in islets of Langerhans is modulated by glucose in a phosphorylation-dependent manner, and that protein kinase A or protein kinase C are not involved. Finally, IUF1 was shown to be immunologically related to a recently cloned factor, IPF1, that binds to a CT-like sequence in the rat insulin I gene promoter.

Full text

PDF
625

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980 Jan;18(1):5–15. doi: 10.1007/BF01228295. [DOI] [PubMed] [Google Scholar]
  2. Bergot M. O., Diaz-Guerra M. J., Puzenat N., Raymondjean M., Kahn A. Cis-regulation of the L-type pyruvate kinase gene promoter by glucose, insulin and cyclic AMP. Nucleic Acids Res. 1992 Apr 25;20(8):1871–1877. doi: 10.1093/nar/20.8.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boam D. S., Clark A. R., Docherty K. Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J Biol Chem. 1990 May 15;265(14):8285–8296. [PubMed] [Google Scholar]
  4. Boam D. S., Docherty K. A tissue-specific nuclear factor binds to multiple sites in the human insulin-gene enhancer. Biochem J. 1989 Nov 15;264(1):233–239. doi: 10.1042/bj2640233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. R., Docherty K. Cell-specific gene expression in the islets of Langerhans: E boxes and TAAT boxes. Biochem Soc Trans. 1993 Feb;21(1):154–159. doi: 10.1042/bst0210154. [DOI] [PubMed] [Google Scholar]
  6. Clark A. R., Petersen H. V., Read M. L., Scott V., Michelsen B. K., Docherty K. Human insulin gene enhancer-binding proteins in pancreatic alpha and beta cell lines. FEBS Lett. 1993 Aug 23;329(1-2):139–143. doi: 10.1016/0014-5793(93)80210-l. [DOI] [PubMed] [Google Scholar]
  7. Diaz Guerra M. J., Bergot M. O., Martinez A., Cuif M. H., Kahn A., Raymondjean M. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol Cell Biol. 1993 Dec;13(12):7725–7733. doi: 10.1128/mcb.13.12.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Docherty K. 1992 R.D. Lawrence Lecture. The regulation of insulin gene expression. Diabet Med. 1992 Nov;9(9):792–798. doi: 10.1111/j.1464-5491.1992.tb01896.x. [DOI] [PubMed] [Google Scholar]
  9. Docherty K., Clark A. R. Nutrient regulation of insulin gene expression. FASEB J. 1994 Jan;8(1):20–27. doi: 10.1096/fasebj.8.1.8299887. [DOI] [PubMed] [Google Scholar]
  10. German M. S., Blanar M. A., Nelson C., Moss L. G., Rutter W. J. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind the insulin enhancer. Mol Endocrinol. 1991 Feb;5(2):292–299. doi: 10.1210/mend-5-2-292. [DOI] [PubMed] [Google Scholar]
  11. German M. S., Moss L. G., Rutter W. J. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem. 1990 Dec 25;265(36):22063–22066. [PubMed] [Google Scholar]
  12. German M. S., Moss L. G., Wang J., Rutter W. J. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes. Mol Cell Biol. 1992 Apr;12(4):1777–1788. doi: 10.1128/mcb.12.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodison S., Kenna S., Ashcroft S. J. Control of insulin gene expression by glucose. Biochem J. 1992 Jul 15;285(Pt 2):563–568. doi: 10.1042/bj2850563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurst R. D., Morgan N. G. Evidence for differential effects of noradrenaline and somatostatin on intracellular messenger systems in rat islets of Langerhans. J Mol Endocrinol. 1990 Jun;4(3):231–237. doi: 10.1677/jme.0.0040231. [DOI] [PubMed] [Google Scholar]
  15. Karlsson O., Edlund T., Moss J. B., Rutter W. J., Walker M. D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8819–8823. doi: 10.1073/pnas.84.24.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karlsson O., Thor S., Norberg T., Ohlsson H., Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature. 1990 Apr 26;344(6269):879–882. doi: 10.1038/344879a0. [DOI] [PubMed] [Google Scholar]
  17. Leonard J., Peers B., Johnson T., Ferreri K., Lee S., Montminy M. R. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 1993 Oct;7(10):1275–1283. doi: 10.1210/mend.7.10.7505393. [DOI] [PubMed] [Google Scholar]
  18. Marie S., Diaz-Guerra M. J., Miquerol L., Kahn A., Iynedjian P. B. The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic beta-cell type. J Biol Chem. 1993 Nov 15;268(32):23881–23890. [PubMed] [Google Scholar]
  19. Melloul D., Ben-Neriah Y., Cerasi E. Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3865–3869. doi: 10.1073/pnas.90.9.3865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montague W., Taylor K. W. Pentitols and insulin release by isolated rat islets of Langerhans. Biochem J. 1968 Sep;109(3):333–339. doi: 10.1042/bj1090333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohlsson H., Karlsson K., Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993 Nov;12(11):4251–4259. doi: 10.1002/j.1460-2075.1993.tb06109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohlsson H., Thor S., Edlund T. Novel insulin promoter- and enhancer-binding proteins that discriminate between pancreatic alpha- and beta-cells. Mol Endocrinol. 1991 Jul;5(7):897–904. doi: 10.1210/mend-5-7-897. [DOI] [PubMed] [Google Scholar]
  23. Olson L. K., Redmon J. B., Towle H. C., Robertson R. P. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest. 1993 Jul;92(1):514–519. doi: 10.1172/JCI116596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Park C. W., Walker M. D. Subunit structure of cell-specific E box-binding proteins analyzed by quantitation of electrophoretic mobility shift. J Biol Chem. 1992 Aug 5;267(22):15642–15649. [PubMed] [Google Scholar]
  25. Philippe J., Missotten M. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem. 1990 Jan 25;265(3):1465–1469. [PubMed] [Google Scholar]
  26. Read M. L., Clark A. R., Docherty K. The helix-loop-helix transcription factor USF (upstream stimulating factor) binds to a regulatory sequence of the human insulin gene enhancer. Biochem J. 1993 Oct 1;295(Pt 1):233–237. doi: 10.1042/bj2950233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reibel L., Besnard C., Lores P., Jami J., Gacon G. An insulinoma nuclear factor binding to GGGCCC motifs in human insulin gene. Nucleic Acids Res. 1993 Apr 11;21(7):1595–1600. doi: 10.1093/nar/21.7.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scott V., Clark A. R., Hutton J. C., Docherty K. Two proteins act as the IUF1 insulin gene enhancer binding factor. FEBS Lett. 1991 Sep 23;290(1-2):27–30. doi: 10.1016/0014-5793(91)81217-v. [DOI] [PubMed] [Google Scholar]
  30. Shelton K. D., Franklin A. J., Khoor A., Beechem J., Magnuson M. A. Multiple elements in the upstream glucokinase promoter contribute to transcription in insulinoma cells. Mol Cell Biol. 1992 Oct;12(10):4578–4589. doi: 10.1128/mcb.12.10.4578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shibasaki Y., Sakura H., Takaku F., Kasuga M. Insulin enhancer binding protein has helix-loop-helix structure. Biochem Biophys Res Commun. 1990 Jul 16;170(1):314–321. doi: 10.1016/0006-291x(90)91276-x. [DOI] [PubMed] [Google Scholar]
  32. Walker M. D., Edlund T., Boulet A. M., Rutter W. J. Cell-specific expression controlled by the 5'-flanking region of insulin and chymotrypsin genes. Nature. 1983 Dec 8;306(5943):557–561. doi: 10.1038/306557a0. [DOI] [PubMed] [Google Scholar]
  33. Walker M. D., Park C. W., Rosen A., Aronheim A. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 1990 Mar 11;18(5):1159–1166. doi: 10.1093/nar/18.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES