Abstract
A peptide corresponding to the N-terminal sequence of the rat malate dehydrogenase, comprising the transit sequence and two residues of the mature protein (MLSALARPVGAALR-RSFSTSAQNNAK) has been chemically synthesized, and its structural characteristics investigated by Fourier-transform i.r. (FT-IR), c.d. and 1H-n.m.r. spectroscopy. FT-IR and c.d. spectra of the peptide were recorded in a variety of environments (aqueous solution, trifluoroethanol) and after incorporation into phospholipid bilayers. The peptide was found to be mainly in aperiodic or undefined conformation in aqueous solution. However, in trifluoroethanol a marked increase in alpha-helical content was observed. An increase in alpha-helical content was also observed in negatively charged lipids (dimyristoylphosphatidylglycerol and cardiolipin). However, when reconstituted in a zwitterionic phospholipid (dimyristoylphosphatidylcholine), no alpha-helical structure was observed. N.m.r. spectroscopy was used to characterize the helical structure in greater detail in trifluoroethanol. The 1H-n.m.r. spectrum of the peptide in this solvent was assigned using standard homonuclear two-dimensional methods. The observed patterns of nuclear Overhauser enhancements confirmed the deductions obtained from c.d. and FT-1R spectroscopy concerning the solution conformation, suggesting a region of flexible nascent helix between Ala-4 and Ser-18. This structure is discussed in terms of the possible function of the peptide.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker K. P., Schatz G. Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria. Nature. 1991 Jan 17;349(6306):205–208. doi: 10.1038/349205a0. [DOI] [PubMed] [Google Scholar]
- Chu T. W., Eftime R., Sztul E., Strauss A. W. Synthetic transit peptides inhibit import and processing of mitochondrial precursor proteins. J Biol Chem. 1989 Jun 5;264(16):9552–9558. [PubMed] [Google Scholar]
- Chu T. W., Grant P. M., Strauss A. W. Mutation of a neutral amino acid in the transit peptide of rat mitochondrial malate dehydrogenase abolishes binding and import. J Biol Chem. 1987 Nov 15;262(32):15759–15764. [PubMed] [Google Scholar]
- Chu T. W., Grant P. M., Strauss A. W. The role of arginine residues in the rat mitochondrial malate dehydrogenase transit peptide. J Biol Chem. 1987 Sep 15;262(26):12806–12811. [PubMed] [Google Scholar]
- Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M., Hui S. W., Argan C., Gillespie L. L., Shore G. C. Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J Biol Chem. 1986 Aug 5;261(22):10017–10020. [PubMed] [Google Scholar]
- Grant P. M., Tellam J., May V. L., Strauss A. W. Isolation and nucleotide sequence of a cDNA clone encoding rat mitochondrial malate dehydrogenase. Nucleic Acids Res. 1986 Aug 11;14(15):6053–6066. doi: 10.1093/nar/14.15.6053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haris P. I., Chapman D. Does Fourier-transform infrared spectroscopy provide useful information on protein structures? Trends Biochem Sci. 1992 Sep;17(9):328–333. doi: 10.1016/0968-0004(92)90305-s. [DOI] [PubMed] [Google Scholar]
- Haris P. I., Lee D. C., Chapman D. A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochim Biophys Acta. 1986 Dec 12;874(3):255–265. doi: 10.1016/0167-4838(86)90024-5. [DOI] [PubMed] [Google Scholar]
- Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
- Jackson M., Haris P. I., Chapman D. Fourier transform infrared spectroscopic studies of Ca(2+)-binding proteins. Biochemistry. 1991 Oct 8;30(40):9681–9686. doi: 10.1021/bi00104a016. [DOI] [PubMed] [Google Scholar]
- Karslake C., Piotto M. E., Pak Y. K., Weiner H., Gorenstein D. G. 2D NMR and structural model for a mitochondrial signal peptide bound to a micelle. Biochemistry. 1990 Oct 23;29(42):9872–9878. doi: 10.1021/bi00494a017. [DOI] [PubMed] [Google Scholar]
- Keller R. C., Killian J. A., de Kruijff B. Anionic phospholipids are essential for alpha-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles. Biochemistry. 1992 Feb 18;31(6):1672–1677. doi: 10.1021/bi00121a014. [DOI] [PubMed] [Google Scholar]
- Pak Y. K., Weiner H. Import of chemically synthesized signal peptides into rat liver mitochondria. J Biol Chem. 1990 Aug 25;265(24):14298–14307. [PubMed] [Google Scholar]
- Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
- Roise D., Horvath S. J., Tomich J. M., Richards J. H., Schatz G. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 1986 Jun;5(6):1327–1334. doi: 10.1002/j.1460-2075.1986.tb04363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatz G. The protein import machinery of mitochondria. Protein Sci. 1993 Feb;2(2):141–146. doi: 10.1002/pro.5560020202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
- Tamm L. K., Bartoldus I. Secondary structure of a mitochondrial signal peptide in lipid bilayer membranes. FEBS Lett. 1990 Oct 15;272(1-2):29–33. doi: 10.1016/0014-5793(90)80441-k. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Simple techniques for the quantification of protein secondary structure by 1H NMR spectroscopy. FEBS Lett. 1991 Nov 18;293(1-2):72–80. doi: 10.1016/0014-5793(91)81155-2. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]
