Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Dec 15;304(Pt 3):707–713. doi: 10.1042/bj3040707

Mitochondrial metabolism of a hydroperoxide to free radicals in human endothelial cells: an electron spin resonance spin-trapping investigation.

V O'Donnell 1, M J Burkitt 1
PMCID: PMC1137392  PMID: 7818471

Abstract

Oxidative damage to the vascular endothelium may be an important event in the promotion of atherosclerosis. Several lines of evidence suggest that lipid hydroperoxides may be responsible for the induction of such damage. Hydroperoxides cause loss of endothelial cell integrity, increase the permeability of the endothelium to macromolecules, and compromise its ability to control vascular tone via the secretion of vasoactive molecules in response to receptor stimulation. The molecular mechanisms responsible for these effects are, however, poorly understood. In this paper, we describe an e.s.r. spin-trapping investigation into the metabolism of the model hydroperoxide compound tert-butylhydroperoxide to reactive free radicals in intact human endothelial cells. The hydroperoxide is shown to undergo a single electron reduction to form free radicals. Experiments with metabolic poisons indicate that the mitochondrial electron-transport chain is the source of electrons for this reduction. The metal-ion-chelating agent desferrioxamine was found to prevent cell killing by tert-butylhydroperoxide, but did not affect free radical formation, suggesting that free metal ions may serve to promote free-radical chain reactions involved in cell killing following the initial conversion of the hydroperoxide to free radicals by mitochondria. These processes may well be responsible for many of the reported effects of hydroperoxides on endothelial cell integrity and function.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anuforo D. C., Acosta D., Smith R. V. Hepatotoxicity studies with primary cultures of rat liver cells. In Vitro. 1978 Dec;14(12):981–988. doi: 10.1007/BF02616211. [DOI] [PubMed] [Google Scholar]
  2. Arroyo C. M., Carmichael A. J., Bouscarel B., Liang J. H., Weglicki W. B. Endothelial cells as a source of oxygen-free radicals. An ESR study. Free Radic Res Commun. 1990;9(3-6):287–296. doi: 10.3109/10715769009145687. [DOI] [PubMed] [Google Scholar]
  3. Babbs C. F., Cregor M. D., Turek J. J., Badylak S. F. Endothelial superoxide production in buffer perfused rat lungs, demonstrated by a new histochemical technique. Lab Invest. 1991 Oct;65(4):484–496. [PubMed] [Google Scholar]
  4. Bellomo G., Martino A., Richelmi P., Moore G. A., Jewell S. A., Orrenius S. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Eur J Biochem. 1984 Apr 2;140(1):1–6. doi: 10.1111/j.1432-1033.1984.tb08058.x. [DOI] [PubMed] [Google Scholar]
  5. Birnbaumer M., Seibold A., Gilbert S., Ishido M., Barberis C., Antaramian A., Brabet P., Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992 May 28;357(6376):333–335. doi: 10.1038/357333a0. [DOI] [PubMed] [Google Scholar]
  6. Buettner G. R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988 May;16(1):27–40. doi: 10.1016/0165-022x(88)90100-5. [DOI] [PubMed] [Google Scholar]
  7. Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977 Apr 30;180(2):248–257. doi: 10.1016/0003-9861(77)90035-2. [DOI] [PubMed] [Google Scholar]
  8. Chamulitrat W., Iwahashi H., Kelman D. J., Mason R. P. Evidence against the 1:2:2:1 quartet DMPO spectrum as the radical adduct of the lipid alkoxyl radical. Arch Biochem Biophys. 1992 Aug 1;296(2):645–649. doi: 10.1016/0003-9861(92)90621-3. [DOI] [PubMed] [Google Scholar]
  9. Cutler M. G., Schneider R. Linoleate oxidation products and cardiovascular lesions. Atherosclerosis. 1974 Sep-Oct;20(2):383–394. doi: 10.1016/0021-9150(74)90019-7. [DOI] [PubMed] [Google Scholar]
  10. Davies M. J. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochim Biophys Acta. 1988 Jan 12;964(1):28–35. doi: 10.1016/0304-4165(88)90063-3. [DOI] [PubMed] [Google Scholar]
  11. Davies M. J. Electron spin resonance studies on the degradation of hydroperoxides by rat liver cytosol. Free Radic Res Commun. 1990;9(3-6):251–258. doi: 10.3109/10715769009145683. [DOI] [PubMed] [Google Scholar]
  12. Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
  13. Elliott S. J., Doan T. N. Oxidant stress inhibits the store-dependent Ca(2+)-influx pathway of vascular endothelial cells. Biochem J. 1993 Jun 1;292(Pt 2):385–393. doi: 10.1042/bj2920385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Elliott S. J., Doan T. N., Schilling W. P. Role of lipid peroxidation in tert-butylhydroperoxide-induced inhibition of endothelial cell calcium signaling. J Pharmacol Exp Ther. 1993 Mar;264(3):1063–1070. [PubMed] [Google Scholar]
  15. Elliott S. J., Meszaros J. G., Schilling W. P. Effect of oxidant stress on calcium signaling in vascular endothelial cells. Free Radic Biol Med. 1992 Dec;13(6):635–650. doi: 10.1016/0891-5849(92)90038-i. [DOI] [PubMed] [Google Scholar]
  16. Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr. 1993 May;57(5 Suppl):779S–786S. doi: 10.1093/ajcn/57.5.779S. [DOI] [PubMed] [Google Scholar]
  17. Gimbrone M. A., Jr Culture of vascular endothelium. Prog Hemost Thromb. 1976;3:1–28. [PubMed] [Google Scholar]
  18. Greenley T. L., Davies M. J. Radical production from peroxide and peracid tumour promoters: EPR spin trapping studies. Biochim Biophys Acta. 1993 May 7;1157(1):23–31. doi: 10.1016/0304-4165(93)90074-i. [DOI] [PubMed] [Google Scholar]
  19. Halliwell B. Free radicals and vascular disease: how much do we know? BMJ. 1993 Oct 9;307(6909):885–886. doi: 10.1136/bmj.307.6909.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis. 1993 Mar;23 (Suppl 1):118–126. doi: 10.1159/000216921. [DOI] [PubMed] [Google Scholar]
  21. Hanna P. M., Chamulitrat W., Mason R. P. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? Arch Biochem Biophys. 1992 Aug 1;296(2):640–644. doi: 10.1016/0003-9861(92)90620-c. [DOI] [PubMed] [Google Scholar]
  22. Hennig B., Chow C. K. Lipid peroxidation and endothelial cell injury: implications in atherosclerosis. Free Radic Biol Med. 1988;4(2):99–106. doi: 10.1016/0891-5849(88)90070-6. [DOI] [PubMed] [Google Scholar]
  23. Hennig B., Enoch C., Chow C. K. Linoleic acid hydroperoxide increases the transfer of albumin across cultured endothelial monolayers. Arch Biochem Biophys. 1986 Jul;248(1):353–357. doi: 10.1016/0003-9861(86)90431-5. [DOI] [PubMed] [Google Scholar]
  24. Imberti R., Nieminen A. L., Herman B., Lemasters J. J. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther. 1993 Apr;265(1):392–400. [PubMed] [Google Scholar]
  25. Jaffe E. A., Hoyer L. W., Nachman R. L. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973 Nov;52(11):2757–2764. doi: 10.1172/JCI107471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kennedy C. H., Church D. F., Winston G. W., Pryor W. A. tert-Butyl hydroperoxide-induced radical production in rat liver mitochondria. Free Radic Biol Med. 1992;12(5):381–387. doi: 10.1016/0891-5849(92)90087-w. [DOI] [PubMed] [Google Scholar]
  28. Kennedy C. H., Pryor W. A., Winston G. W., Church D. F. Hydroperoxide-induced radical production in liver mitochondria. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1123–1129. doi: 10.1016/s0006-291x(86)80160-7. [DOI] [PubMed] [Google Scholar]
  29. Maiorino M., Thomas J. P., Girotti A. W., Ursini F. Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic Res Commun. 1991;12-13 Pt 1:131–135. doi: 10.3109/10715769109145777. [DOI] [PubMed] [Google Scholar]
  30. Maples K. R., Kennedy C. H., Jordan S. J., Mason R. P. In vivo thiyl free radical formation from hemoglobin following administration of hydroperoxides. Arch Biochem Biophys. 1990 Mar;277(2):402–409. doi: 10.1016/0003-9861(90)90596-q. [DOI] [PubMed] [Google Scholar]
  31. Masaki N., Kyle M. E., Farber J. L. tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch Biochem Biophys. 1989 Mar;269(2):390–399. doi: 10.1016/0003-9861(89)90122-7. [DOI] [PubMed] [Google Scholar]
  32. Massa E. M., Giulivi C. Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study. Free Radic Biol Med. 1993 May;14(5):559–565. doi: 10.1016/0891-5849(93)90114-a. [DOI] [PubMed] [Google Scholar]
  33. Panus P. C., Radi R., Chumley P. H., Lillard R. H., Freeman B. A. Detection of H2O2 release from vascular endothelial cells. Free Radic Biol Med. 1993 Feb;14(2):217–223. doi: 10.1016/0891-5849(93)90013-k. [DOI] [PubMed] [Google Scholar]
  34. Ross R., Glomset J. A. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976 Aug 19;295(8):420–425. doi: 10.1056/NEJM197608192950805. [DOI] [PubMed] [Google Scholar]
  35. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  36. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Samuni A., Carmichael A. J., Russo A., Mitchell J. B., Riesz P. On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7593–7597. doi: 10.1073/pnas.83.20.7593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993 Jul 15;215(2):213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x. [DOI] [PubMed] [Google Scholar]
  39. Siflinger-Birnboim A., Malik A. B. Neutrophil adhesion to endothelial cells impairs the effects of catalase and glutathione in preventing endothelial injury. J Cell Physiol. 1993 May;155(2):234–239. doi: 10.1002/jcp.1041550203. [DOI] [PubMed] [Google Scholar]
  40. Staal F. J., Ela S. W., Roederer M., Anderson M. T., Herzenberg L. A., Herzenberg L. A. Glutathione deficiency and human immunodeficiency virus infection. Lancet. 1992 Apr 11;339(8798):909–912. doi: 10.1016/0140-6736(92)90939-z. [DOI] [PubMed] [Google Scholar]
  41. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sundqvist T. Bovine aortic endothelial cells release hydrogen peroxide. J Cell Physiol. 1991 Jul;148(1):152–156. doi: 10.1002/jcp.1041480118. [DOI] [PubMed] [Google Scholar]
  43. Taher M. M., Garcia J. G., Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys. 1993 Jun;303(2):260–266. doi: 10.1006/abbi.1993.1281. [DOI] [PubMed] [Google Scholar]
  44. Terada L. S., Willingham I. R., Rosandich M. E., Leff J. A., Kindt G. W., Repine J. E. Generation of superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol. 1991 Aug;148(2):191–196. doi: 10.1002/jcp.1041480202. [DOI] [PubMed] [Google Scholar]
  45. Timmins G. S., Davies M. J. Free radical formation in isolated murine keratinocytes treated with organic peroxides and its modulation by antioxidants. Carcinogenesis. 1993 Aug;14(8):1615–1620. doi: 10.1093/carcin/14.8.1615. [DOI] [PubMed] [Google Scholar]
  46. Vercellotti G. M., Dobson M., Schorer A. E., Moldow C. F. Endothelial cell heterogeneity: antioxidant profiles determine vulnerability to oxidant injury. Proc Soc Exp Biol Med. 1988 Feb;187(2):181–189. doi: 10.3181/00379727-187-42652. [DOI] [PubMed] [Google Scholar]
  47. Warren J. S., Ward P. A. Oxidative injury to the vascular endothelium. Am J Med Sci. 1986 Aug;292(2):97–103. doi: 10.1097/00000441-198608000-00006. [DOI] [PubMed] [Google Scholar]
  48. Yagi K., Ishida N., Komura S., Ohishi N., Kusai M., Kohno M. Generation of hydroxyl radical from linoleic acid hydroperoxide in the presence of epinephrine and iron. Biochem Biophys Res Commun. 1992 Mar 31;183(3):945–951. doi: 10.1016/s0006-291x(05)80281-5. [DOI] [PubMed] [Google Scholar]
  49. de Groot J. J., Veldink G. A., Vliegenthart J. F., Boldingh J., Wever R., van Gelder B. F. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim Biophys Acta. 1975 Jan 23;377(1):71–79. doi: 10.1016/0005-2744(75)90287-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES