Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Dec 15;304(Pt 3):869–876. doi: 10.1042/bj3040869

gamma-Glutamyltranspeptidase-catalysed acyl-transfer to the added acceptor does not proceed via the ping-pong mechanism.

Gololobov MYu 1, R C Bateman Jr 1
PMCID: PMC1137414  PMID: 7818493

Abstract

Acyl-transfer catalysed by gamma-glutamyltranspeptidase from bovine kidney was studied using gamma-L- and gamma-D-Glu-p-nitroanilide as the donor and GlyGly as the acceptor. The transfer of the gamma-Glu group to GlyGly was shown to be accompanied by transfer of the gamma-Glu group to water (hydrolysis). The results were compared with acyl-transfer catalysed by the representative serine protease, alpha-chymotrypsin. The main difference between the kinetic mechanism of the acyl-transfer reactions catalysed by these enzymes, which contain an active-site serine and form an acyl-enzyme intermediate but belong to different enzyme classes, was found to consist in the role of the enzyme-donor-acceptor complex. This complex is not formed at any acceptor concentrations in the acyl-transfer reactions catalysed by the serine proteases. In contrast, in the gamma-glutamyltranspeptidase-catalysed acyl-transfer the pathway going through the ternary enzyme-donor-acceptor complex formed from the enzyme-acceptor complex becomes the main pathway of the transfer reaction even at moderate acceptor concentrations. As a result, gamma-glutamyltranspeptidase catalysis follows a sequential mechanism with random equilibrium addition of the substrates and ordered release of the products. The second distinction concerns the inhibitory effect of the acceptor. In the case of alpha-chymotrypsin this was the result of true inhibition, i.e. a dead-end formation of the enzyme-acceptor complex. A salt effect caused by the acceptor was the rationale of a similar effect observed in acyl-transfer catalysed by gamma-glutamyltranspeptidase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison R. D. gamma-Glutamyl transpeptidase: kinetics and mechanism. Methods Enzymol. 1985;113:419–437. doi: 10.1016/s0076-6879(85)13054-5. [DOI] [PubMed] [Google Scholar]
  2. Antonov V. K., Ginodman L. M., Rumsh L. D., Kapitannikov Y. V., Barshevskaya T. N., Yavashev L. P., Gurova A. G., Volkova L. I. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem. 1981 Jun;117(1):195–200. doi: 10.1111/j.1432-1033.1981.tb06321.x. [DOI] [PubMed] [Google Scholar]
  3. Bagrel D., Petitclerc C., Schiele F., Siest G. Some kinetic properties of gamma-glutamyltransferase from rabbit liver. Biochim Biophys Acta. 1981 Apr 14;658(2):220–231. doi: 10.1016/0005-2744(81)90292-8. [DOI] [PubMed] [Google Scholar]
  4. Berezin I. V., Kazanskaya N. F., Klyosov A. A. Determination of the individual rate constants of alpha-chymotrypsin-catalyzed hydrolysis with the added nucleophilic agent, 1,4-butanediol. FEBS Lett. 1971 Jun 10;15(2):121–124. doi: 10.1016/0014-5793(71)80037-6. [DOI] [PubMed] [Google Scholar]
  5. Bizzozero S. A., Dutler H., Rückert P. Chymotrypsin-catalyzed peptide synthesis. Kinetic analysis of the kinetically controlled peptide-bond formation. Int J Pept Protein Res. 1988 Jul;32(1):64–73. [PubMed] [Google Scholar]
  6. Christensen U., Drøhse H. B., Mølgaard L. Mechanism of carboxypeptidase-Y-catalysed peptide semisynthesis. Eur J Biochem. 1992 Dec 1;210(2):467–473. doi: 10.1111/j.1432-1033.1992.tb17444.x. [DOI] [PubMed] [Google Scholar]
  7. Elce J. S. Active-site amino acid residues in gamma-glutamyltransferase and the nature of the gamma-glutamyl-enzyme bond. Biochem J. 1980 Feb 1;185(2):473–481. doi: 10.1042/bj1850473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elce J. S., Broxmeyer B. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J. 1976 Feb 1;153(2):223–232. doi: 10.1042/bj1530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fastrez J., Fersht A. R. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry. 1973 May 22;12(11):2025–2034. doi: 10.1021/bi00735a001. [DOI] [PubMed] [Google Scholar]
  10. Fersht A. R., Blow D. M., Fastrez J. Leaving group specificity in the chymotrypsin-catalyzed hydrolysis of peptides. A stereochemical interpretation. Biochemistry. 1973 May 22;12(11):2035–2041. doi: 10.1021/bi00735a002. [DOI] [PubMed] [Google Scholar]
  11. Gololobov MYu, Petrauskas A., Pauliukonis R., Koschke V., Borisov I. L., Svedas V. Increased nucleophile reactivity of amino acid beta-naphthylamides in alpha-chymotrypsin-catalyzed peptide synthesis. Biochim Biophys Acta. 1990 Oct 18;1041(1):71–78. doi: 10.1016/0167-4838(90)90124-x. [DOI] [PubMed] [Google Scholar]
  12. Gololobov MYu, Voyushina T. L., Stepanov V. M., Adlercreutz P. Nucleophile specificity in alpha-chymotrypsin- and subtilisin-(Bacillus subtilis strain 72) catalyzed reactions. Biochim Biophys Acta. 1992 Nov 20;1160(2):188–192. doi: 10.1016/0167-4838(92)90006-y. [DOI] [PubMed] [Google Scholar]
  13. Gololobov M. Y., Stepanov V. M., Voyushina T. L., Adlercreutz P. The second nucleophile molecule binds to the acyl-enzyme-nucleophile complex in alpha-chymotrypsin catalysis. Kinetic evidence for the interaction. Eur J Biochem. 1993 Nov 1;217(3):955–963. doi: 10.1111/j.1432-1033.1993.tb18326.x. [DOI] [PubMed] [Google Scholar]
  14. Huseby N. E. Purification and some properties of gamma-glutamyltransferase from human liver. Biochim Biophys Acta. 1977 Jul 8;483(1):46–56. doi: 10.1016/0005-2744(77)90006-7. [DOI] [PubMed] [Google Scholar]
  15. Inoue M., Horiuchi S., Morino Y. Inactivation of gamma-glutamyl transpeptidase by phenylmethanesulfonyl fluoride, a specific inactivator of serine enzymes. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1183–1188. doi: 10.1016/0006-291x(78)90311-x. [DOI] [PubMed] [Google Scholar]
  16. Karkowsky A. M., Bergamini M. V., Orlowski M. Kinetic studies of sheep kidney gamma-glutamyl transpeptidase. J Biol Chem. 1976 Aug 10;251(15):4736–4743. [PubMed] [Google Scholar]
  17. Kullmann W. Kinetics of chymotrypsin- and papain-catalysed synthesis of [leucine]enkephalin and [methionine]enkephalin. Biochem J. 1984 Jun 1;220(2):405–416. doi: 10.1042/bj2200405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. London J. W., Shaw L. M., Fetterolf D., Garfinkel D. Determination of the mechanism and kinetic constants for hog kidney gamma-glutamyltransferase. Biochem J. 1976 Sep 1;157(3):609–617. doi: 10.1042/bj1570609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
  20. PetitClerc C., Shiele F., Bagrel D., Mahassen A., Siest G. Kinetic properties of gamma-glutamyltransferase from human liver. Clin Chem. 1980 Nov;26(12):1688–1693. [PubMed] [Google Scholar]
  21. Petkov D. D., Stoineva I. Nucleophile specificity in chymotrypsin peptide synthesis. Biochem Biophys Res Commun. 1984 Jan 13;118(1):317–323. doi: 10.1016/0006-291x(84)91103-3. [DOI] [PubMed] [Google Scholar]
  22. Riechmann L., Kasche V. Kinetic studies on the mechanism and the specificity of peptide semisynthesis catalyzed by the serine proteases alpha-chymotrypsin and beta-trypsin. Biochem Biophys Res Commun. 1984 Apr 30;120(2):686–691. doi: 10.1016/0006-291x(84)91310-x. [DOI] [PubMed] [Google Scholar]
  23. Riechmann L., Kasche V. Peptide synthesis catalyzed by the serine proteinases chymotrypsin and trypsin. Biochim Biophys Acta. 1985 Aug 8;830(2):164–172. doi: 10.1016/0167-4838(85)90024-x. [DOI] [PubMed] [Google Scholar]
  24. Rosalki S. B., Tarlow D. Optimized determination of gamma-glutamyltransferase by reaction-rate analysis. Clin Chem. 1974 Sep;20(9):1121–1124. [PubMed] [Google Scholar]
  25. Schellenberger V., Jakubke H. D. A spectrophotometric assay for the characterization of the S' subsite specificity of alpha-chymotrypsin. Biochim Biophys Acta. 1986 Jan 17;869(1):54–60. doi: 10.1016/0167-4838(86)90309-2. [DOI] [PubMed] [Google Scholar]
  26. Schellenberger V., Kosk M., Jakubke H. D., Aaviksaar A. Electrostatic effects in the alpha-chymotrypsin-catalyzed acyl transfer. I. Influence of different inorganic salts. Biochim Biophys Acta. 1991 May 30;1078(1):1–7. doi: 10.1016/0167-4838(91)90083-c. [DOI] [PubMed] [Google Scholar]
  27. Schellenberger V., Schellenberger U., Mitin Y. V., Jakubke H. D. Characterization of the S'-subsite specificity of bovine pancreatic alpha-chymotrypsin via acyl transfer to added nucleophiles. Eur J Biochem. 1990 Jan 12;187(1):163–167. doi: 10.1111/j.1432-1033.1990.tb15290.x. [DOI] [PubMed] [Google Scholar]
  28. Schiele F., Artur Y., Bagrel D., Petitclerc C., Siest G. Measurement of plasma gamma-glutamyltransferase in clinical chemistry: kinetic basis and standardisation propositions. Clin Chim Acta. 1981 May 5;112(2):187–195. doi: 10.1016/0009-8981(81)90377-6. [DOI] [PubMed] [Google Scholar]
  29. Seydoux F., Yon J., Némethy G. Hydrophobic interactions of some alcohols with acyl trypsins. Biochim Biophys Acta. 1969 Jan 7;171(1):145–156. doi: 10.1016/0005-2744(69)90114-4. [DOI] [PubMed] [Google Scholar]
  30. Shaw L. M., London J. W., Fetterolf D., Garfinkel D. Gamma-Glutamyltransferase: kinetic properties and assay conditions when gamma-glutamyl-4-nitroanilide and its 3-carboxy derivative are used as donor substrates. Clin Chem. 1977 Jan;23(1):79–85. [PubMed] [Google Scholar]
  31. Shaw L. M., London J. W., Petersen L. E. Isolation of gamma-glutamyltransferase from human liver, and comparison with the enzyme from human kidney. Clin Chem. 1978 Jun;24(6):905–915. [PubMed] [Google Scholar]
  32. Solberg H. E., Theodorsen L., Strømme J. H. gamma-Glutamyltransferase in human serum: an analysis of kinetic models. Clin Chem. 1981 Feb;27(2):303–307. [PubMed] [Google Scholar]
  33. Stromme J. H., Theodorsen L. Gamma-glutamyltransferase: Substrate inhibition, kinetic mechanism, and assay conditions. Clin Chem. 1976 Apr;22(4):417–421. [PubMed] [Google Scholar]
  34. Tate S. S., Meister A. Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proc Natl Acad Sci U S A. 1977 Mar;74(3):931–935. doi: 10.1073/pnas.74.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  36. Tate S. S., Meister A. Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4806–4809. doi: 10.1073/pnas.75.10.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tate S. S., Meister A. gamma-Glutamyl transpeptidase from kidney. Methods Enzymol. 1985;113:400–419. doi: 10.1016/s0076-6879(85)13053-3. [DOI] [PubMed] [Google Scholar]
  38. Thompson G. A., Meister A. Hydrolysis and transfer reactions catalyzed by gamma-glutamyl transpeptidase; evidence for separate substrate sites and for high affinity of L-cystine. Biochem Biophys Res Commun. 1976 Jul 12;71(1):32–36. doi: 10.1016/0006-291x(76)90245-x. [DOI] [PubMed] [Google Scholar]
  39. Thompson G. A., Meister A. Interrelationships between the binding sites for amino acids, dipeptides, and gamma-glutamyl donors in gamma-glutamyl transpeptidase. J Biol Chem. 1977 Oct 10;252(19):6792–6798. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES