Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Nov 15;304(Pt 1):235–241. doi: 10.1042/bj3040235

Function of streptokinase fragments in plasminogen activation.

G Y Shi 1, B I Chang 1, S M Chen 1, D H Wu 1, H L Wu 1
PMCID: PMC1137477  PMID: 7998939

Abstract

Several peptide fragments of streptokinase (SK) were prepared by incubating SK with immobilized human plasmin (hPlm) and purified by h.p.l.c. with a reverse-phase phenyl column. The N-terminal sequences, amino acid compositions and molecular masses of these peptide fragments were determined. The SK peptide fragment of 36 kDa consisting of Ser60-Lys387 (SK-p), was the only peptide fragment that could be tightly bound to immobilized hPlm. Another three large SK peptide fragments, SK-m, SK-n and SK-o, with molecular masses of 7 kDa, 18 kDa and 30 kDa, and consisting of Ile1-Lys59, Glu148-Lys333, Ser60-Lys333 respectively, were also obtained from the supernatant of the reaction mixture. The purified SK-p had high affinity with hPlm and could activate human plasminogen (hPlg) with a kPlg one-sixth that of the native SK. SK-o had low affinity with hPlm and could also activate hPlg, although the catalytic constant was less than 1% of the native SK. SK-n, as well as SK-m, which is the N-terminal 59 amino acid peptide of the native SK, had no activator activity. However, SK-m could enhance the activator activity of both SK-o and SK-p and increase their second-order rate constants by two- and six-fold respectively. It was concluded from these studies that (1) SK-o, the Ser60-Lys333 peptide of SK, was essential for minimal SK activator activity, (2) the C-terminal peptide of SK-p, Ala334-Lys387, was essential for high affinity with hPlm, and (3) the N-terminal 59-amino-acid peptide was important in maintaining the proper conformation of SK to have its full activator activity.

Full text

PDF
235

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brockway W. J., Castellino F. J. A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry. 1974 May 7;13(10):2063–2070. doi: 10.1021/bi00707a010. [DOI] [PubMed] [Google Scholar]
  2. Brockway W. J., Castellino F. J. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys. 1972 Jul;151(1):194–199. doi: 10.1016/0003-9861(72)90488-2. [DOI] [PubMed] [Google Scholar]
  3. Chase T., Jr, Shaw E. Comparison of the esterase activities of trypsin, plasmin, and thrombin on guanidinobenzoate esters. Titration of the enzymes. Biochemistry. 1969 May;8(5):2212–2224. doi: 10.1021/bi00833a063. [DOI] [PubMed] [Google Scholar]
  4. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Lee B. R., Park S. K., Kim J. H., Byun S. M. Site-specific alteration of Gly-24 in streptokinase: its effect on plasminogen activation. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1085–1090. doi: 10.1016/0006-291x(89)92713-7. [DOI] [PubMed] [Google Scholar]
  7. Ling C. M., Summaria L., Robbins K. C. Mechanism of formation of bovine plasminogen activator from human plasmin. J Biol Chem. 1965 Nov;240(11):4213–4218. [PubMed] [Google Scholar]
  8. McClintock D. K., Bell P. H. The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun. 1971 May 7;43(3):694–702. doi: 10.1016/0006-291x(71)90670-x. [DOI] [PubMed] [Google Scholar]
  9. Powell J. R., Castellino F. J. Activation of human neo-plasminogen-Val442 by urokinase and streptokinase and a kinetic characterization of neoplasmin-Val442. J Biol Chem. 1980 Jun 10;255(11):5329–5335. [PubMed] [Google Scholar]
  10. Radek J. T., Castellino F. J. Conformational properties of streptokinase. J Biol Chem. 1989 Jun 15;264(17):9915–9922. [PubMed] [Google Scholar]
  11. Reddy K. N., Markus G. Esterase activities in the zymogen moiety of the streptokinase-plasminogen complex. J Biol Chem. 1974 Aug 10;249(15):4851–4857. [PubMed] [Google Scholar]
  12. Reddy K. N., Markus G. Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase-plasminogen complex. J Biol Chem. 1972 Mar 25;247(6):1683–1691. [PubMed] [Google Scholar]
  13. Robbins K. C., Summaria L. Plasminogen and plasmin. Methods Enzymol. 1976;45:257–273. doi: 10.1016/s0076-6879(76)45025-5. [DOI] [PubMed] [Google Scholar]
  14. Schick L. A., Castellino F. J. Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem Biophys Res Commun. 1974 Mar 15;57(1):47–54. doi: 10.1016/s0006-291x(74)80355-4. [DOI] [PubMed] [Google Scholar]
  15. Schick L. A., Castellino F. J. Interaction of streptokinase and rabbit plasminogen. Biochemistry. 1973 Oct 23;12(22):4315–4321. doi: 10.1021/bi00746a003. [DOI] [PubMed] [Google Scholar]
  16. Shi G. Y., Chang B. I., Wu D. H., Wu H. L. Interaction of immobilized human plasminogen and plasmin with streptokinase. Biochem Biophys Res Commun. 1993 Aug 31;195(1):192–200. doi: 10.1006/bbrc.1993.2029. [DOI] [PubMed] [Google Scholar]
  17. Shi G. Y., Change B. I., Wu D. H., Ha Y. M., Wu H. L. Activation of human and bovine plasminogens by the microplasmin and streptokinase complex. Thromb Res. 1990 May 1;58(3):317–329. doi: 10.1016/0049-3848(90)90101-h. [DOI] [PubMed] [Google Scholar]
  18. Shi G. Y., Wu D. H., Wu H. L. Kringle domains and plasmin denaturation. Biochem Biophys Res Commun. 1991 Jul 15;178(1):360–368. doi: 10.1016/0006-291x(91)91822-t. [DOI] [PubMed] [Google Scholar]
  19. Shi G. Y., Wu H. L. Differential autolysis of human plasmin at various pH levels. Thromb Res. 1988 Aug 15;51(4):355–364. doi: 10.1016/0049-3848(88)90371-4. [DOI] [PubMed] [Google Scholar]
  20. Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem. 1988 Nov 15;263(32):17071–17075. [PubMed] [Google Scholar]
  21. Siefring G. E., Jr, Castellino F. J. Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product. J Biol Chem. 1976 Jul 10;251(13):3913–3920. [PubMed] [Google Scholar]
  22. Summaria L., Arzadon L., Bernabe P., Robbins K. C. The interaction of streptokinase with human, cat, dog, and rabbit plasminogens. The fragmentation of streptokinase in the equimolar plasminogen-streptokinase complexes. J Biol Chem. 1974 Aug 10;249(15):4760–4769. [PubMed] [Google Scholar]
  23. Summaria L., Robbins K. C. Isolation of a human plasmin-derived, functionally active, light (B) chain capable of forming with streptokinase an equimolar light (B) chain-streptokinase complex with plasminogen activator activity. J Biol Chem. 1976 Sep 25;251(18):5810–5813. [PubMed] [Google Scholar]
  24. Summaria L., Wohl R. C., Boreisha I. G., Robbins K. C. A virgin enzyme derived from human plasminogen. Specific cleavage of the arginyl-560-valyl peptide bond in the diisopropoxyphosphinyl virgin enzyme by plasminogen activators. Biochemistry. 1982 Apr 27;21(9):2056–2059. doi: 10.1021/bi00538a012. [DOI] [PubMed] [Google Scholar]
  25. Teuten A. J., Broadhurst R. W., Smith R. A., Dobson C. M. Characterization of structural and folding properties of streptokinase by n.m.r. spectroscopy. Biochem J. 1993 Mar 1;290(Pt 2):313–319. doi: 10.1042/bj2900313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wohl R. C., Arzadon L., Summaria L., Robbins K. C. Comparison of the esterase and human plasminogen activator activities of various activated forms of human plasminogen and their equimolar streptokinase complexes. J Biol Chem. 1977 Feb 25;252(4):1141–1147. [PubMed] [Google Scholar]
  27. Wohl R. C. Interference of active site specific reagents in plasminogen-streptokinase active site formation. Biochemistry. 1984 Aug 14;23(17):3799–3804. doi: 10.1021/bi00312a002. [DOI] [PubMed] [Google Scholar]
  28. Wohl R. C., Summaria L., Robbins K. C. Kinetics of activation of human plasminogen by different activator species at pH 7.4 and 37 degrees C. J Biol Chem. 1980 Mar 10;255(5):2005–2013. [PubMed] [Google Scholar]
  29. Wu H. L., Shi G. Y., Bender M. L. Preparation and purification of microplasmin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8292–8295. doi: 10.1073/pnas.84.23.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu H. L., Shi G. Y., Wohl R. C., Bender M. L. Structure and formation of microplasmin. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8793–8795. doi: 10.1073/pnas.84.24.8793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wulf R. J., Mertz E. T. Studies on plasminogen. 8. Species specificity of streptokinase. Can J Biochem. 1969 Oct;47(10):927–931. doi: 10.1139/o69-145. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES