Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Dec 1;304(Pt 2):391–398. doi: 10.1042/bj3040391

Analysis of the rat lactate dehydrogenase A subunit gene promoter/regulatory region.

M L Short 1, D Huang 1, D M Milkowski 1, S Short 1, K Kunstman 1, C J Soong 1, K C Chung 1, R A Jungmann 1
PMCID: PMC1137506  PMID: 7998973

Abstract

The rat lactate dehydrogenase (LDH) A subunit gene promoter contains a putative AP-1 binding site at -295/-289 bp, two consensus Sp1 binding sites at -141/-136 bp and -103/-98 bp, and a single copy of a consensus cyclic AMP-responsive element (CRE) at -48 to -41 bp upstream of the transcription initiation site. Additionally, an as yet unidentified silencer element is located within the -1173/-830 bp 5'-flanking region. Transient transfection analyses of a -1173/+25 bp LDH A-chLoramphenicol acetyltransferase fusion gene has indicated a complete inability of the promoter fragment to direct basal or forskolin-induced transcription. Deletion of the -1173/-830 bp sequence restored basal and cyclic AMP (cAMP)-inducible activity. Point mutations in the Sp1 binding sites of a -830/+25 bp promoter fragment reduced basal but not the relative degree of cAMP-inducible activity. cAMP-regulated transcriptional activity was dependent upon an 8 bp CRE, -TGACGTCA-, located at the -48/-41 bp upstream region. Mutations in the CRE abolished cAMP-mediated induction and reduced basal activity by about 65%. The CRE binds a 47 kDa protein which has previously been identified as CRE binding protein (CREB)-327, an isoform of the activating transcription factor/CREB transcription factor gene family. Co-transfection of a vector that expresses the catalytic subunit of cAMP-dependent protein kinase stimulates LDH A subunit promoter activity suggesting that cAMP induces LDH A subunit gene expression through phosphorylative modification of CREB-327. This study emphasizes a fundamental role of several modules including Sp1 and CREB binding sites in regulating basal and cAMP-mediated transcriptional activity of the LDH A gene.

Full text

PDF
391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsen M. S., Li R. S., Dietrich-Goetz W., Morris D. R. Multiple DNA elements responsible for transcriptional regulation of the ornithine decarboxylase gene by protein kinase A. J Biol Chem. 1992 Sep 15;267(26):18866–18873. [PubMed] [Google Scholar]
  2. Andrisani O. M., Zhu Z. N., Pot D. A., Dixon J. E. In vitro transcription directed from the somatostatin promoter is dependent upon a purified 43-kDa DNA-binding protein. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2181–2185. doi: 10.1073/pnas.86.7.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Araki E., Murakami T., Shirotani T., Kanai F., Shinohara Y., Shimada F., Mori M., Shichiri M., Ebina Y. A cluster of four Sp1 binding sites required for efficient expression of the human insulin receptor gene. J Biol Chem. 1991 Feb 25;266(6):3944–3948. [PubMed] [Google Scholar]
  4. Cattaneo A., Biocca S., Corvaja N., Calissano P. Nuclear localization of a lactic dehydrogenase with single-stranded DNA-binding properties. Exp Cell Res. 1985 Nov;161(1):130–140. doi: 10.1016/0014-4827(85)90497-5. [DOI] [PubMed] [Google Scholar]
  5. Chen H. M., Pahl H. L., Scheibe R. J., Zhang D. E., Tenen D. G. The Sp1 transcription factor binds the CD11b promoter specifically in myeloid cells in vivo and is essential for myeloid-specific promoter activity. J Biol Chem. 1993 Apr 15;268(11):8230–8239. [PubMed] [Google Scholar]
  6. Clark A. R., Docherty K. Negative regulation of transcription in eukaryotes. Biochem J. 1993 Dec 15;296(Pt 3):521–541. doi: 10.1042/bj2960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delegeane A. M., Ferland L. H., Mellon P. L. Tissue-specific enhancer of the human glycoprotein hormone alpha-subunit gene: dependence on cyclic AMP-inducible elements. Mol Cell Biol. 1987 Nov;7(11):3994–4002. doi: 10.1128/mcb.7.11.3994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Derda D. F., Miles M. F., Schweppe J. S., Jungmann R. A. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2'-dibutyryl cyclic AMP increase the levels of lactate dehydrogenase-5 isozyme and its messenger RNA in rat C6 glioma cells. J Biol Chem. 1980 Dec 10;255(23):11112–11121. [PubMed] [Google Scholar]
  9. Deutsch P. J., Hoeffler J. P., Jameson J. L., Lin J. C., Habener J. F. Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem. 1988 Dec 5;263(34):18466–18472. [PubMed] [Google Scholar]
  10. Deutsch P. J., Jameson J. L., Habener J. F. Cyclic AMP responsiveness of human gonadotropin-alpha gene transcription is directed by a repeated 18-base pair enhancer. Alpha-promoter receptivity to the enhancer confers cell-preferential expression. J Biol Chem. 1987 Sep 5;262(25):12169–12174. [PubMed] [Google Scholar]
  11. Dynan W. S., Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. doi: 10.1016/0092-8674(83)90210-6. [DOI] [PubMed] [Google Scholar]
  12. Fink J. S., Verhave M., Kasper S., Tsukada T., Mandel G., Goodman R. H. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6662–6666. doi: 10.1073/pnas.85.18.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukasawa K. M., Li S. S. Nucleotide sequence of the putative regulatory region of mouse lactate dehydrogenase-A gene. Biochem J. 1986 Apr 15;235(2):435–439. doi: 10.1042/bj2350435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilman M. Z., Wilson R. N., Weinberg R. A. Multiple protein-binding sites in the 5'-flanking region regulate c-fos expression. Mol Cell Biol. 1986 Dec;6(12):4305–4316. doi: 10.1128/mcb.6.12.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grosse F., Nasheuer H. P., Scholtissek S., Schomburg U. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur J Biochem. 1986 Nov 3;160(3):459–467. doi: 10.1111/j.1432-1033.1986.tb10062.x. [DOI] [PubMed] [Google Scholar]
  16. Habener J. F. Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol. 1990 Aug;4(8):1087–1094. doi: 10.1210/mend-4-8-1087. [DOI] [PubMed] [Google Scholar]
  17. Hou E. W., Li S. S. Cyclic AMP-induced expression of the mouse lactate dehydrogenase-A promoter-cat fusion gene in Chinese hamster ovary wild-type cells, but not in cAMP-dependent protein kinase mutant cells. Biochem Biophys Res Commun. 1987 Aug 31;147(1):501–505. doi: 10.1016/s0006-291x(87)80149-3. [DOI] [PubMed] [Google Scholar]
  18. Jameson J. L., Jaffe R. C., Deutsch P. J., Albanese C., Habener J. F. The gonadotropin alpha-gene contains multiple protein binding domains that interact to modulate basal and cAMP-responsive transcription. J Biol Chem. 1988 Jul 15;263(20):9879–9886. [PubMed] [Google Scholar]
  19. Jameson J. L., Powers A. C., Gallagher G. D., Habener J. F. Enhancer and promoter element interactions dictate cyclic adenosine monophosphate mediated and cell-specific expression of the glycoprotein hormone alpha-gene. Mol Endocrinol. 1989 May;3(5):763–772. doi: 10.1210/mend-3-5-763. [DOI] [PubMed] [Google Scholar]
  20. Jungmann R. A., Kelley D. C., Miles M. F., Milkowski D. M. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2-dibutyryl cyclic amp increase the rate of transcription and change the stability of lactate dehydrogenase a subunit messenger RNA in rat C6 glioma cells. J Biol Chem. 1983 Apr 25;258(8):5312–5318. [PubMed] [Google Scholar]
  21. Kim K. S., Lee M. K., Carroll J., Joh T. H. Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem. 1993 Jul 25;268(21):15689–15695. [PubMed] [Google Scholar]
  22. Kwast-Welfeld J., Soong C. J., Short M. L., Jungmann R. A. Identification of rat ovarian nuclear factors that interact with the cAMP-inducible lactate dehydrogenase A subunit promoter. J Biol Chem. 1989 Apr 25;264(12):6941–6947. [PubMed] [Google Scholar]
  23. Lafyatis R., Lechleider R., Kim S. J., Jakowlew S., Roberts A. B., Sporn M. B. Structural and functional characterization of the transforming growth factor beta 3 promoter. A cAMP-responsive element regulates basal and induced transcription. J Biol Chem. 1990 Nov 5;265(31):19128–19136. [PubMed] [Google Scholar]
  24. Lee C., Oliver L., Coe E. L., Oyasu R. Lactate dehydrogenase in normal mammary glands and in 7,12-dimethylbenz[a]anthracene-induced mammary tumors in Sprague-Dawley rats. J Natl Cancer Inst. 1979 Jan;62(1):193–199. [PubMed] [Google Scholar]
  25. Leza M. A., Hearing P. Independent cyclic AMP and E1A induction of adenovirus early region 4 expression. J Virol. 1989 Jul;63(7):3057–3064. doi: 10.1128/jvi.63.7.3057-3064.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li S. S., Hou E. W. Estrogen-induced expression of mouse lactate dehydrogenase-A gene. Cell Biol Int Rep. 1989 Jul;13(7):619–624. doi: 10.1016/0309-1651(89)90112-4. [DOI] [PubMed] [Google Scholar]
  27. Lin Y. S., Green M. R. Interaction of a common cellular transcription factor, ATF, with regulatory elements in both E1a- and cyclic AMP-inducible promoters. Proc Natl Acad Sci U S A. 1988 May;85(10):3396–3400. doi: 10.1073/pnas.85.10.3396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matrisian L. M., Rautmann G., Magun B. E., Breathnach R. Epidermal growth factor or serum stimulation of rat fibroblasts induces an elevation in mRNA levels for lactate dehydrogenase and other glycolytic enzymes. Nucleic Acids Res. 1985 Feb 11;13(3):711–726. doi: 10.1093/nar/13.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Matthes H. W., Staub A., Chambon P. The segmented paper method: DNA synthesis and mutagenesis by rapid microscale "shotgun gene synthesis". Methods Enzymol. 1987;154:250–287. doi: 10.1016/0076-6879(87)54080-0. [DOI] [PubMed] [Google Scholar]
  30. Mellon P. L., Clegg C. H., Correll L. A., McKnight G. S. Regulation of transcription by cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4887–4891. doi: 10.1073/pnas.86.13.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okazaki T., Zajac J. D., Igarashi T., Ogata E., Kronenberg H. M. Negative regulatory elements in the human parathyroid hormone gene. J Biol Chem. 1991 Nov 15;266(32):21903–21910. [PubMed] [Google Scholar]
  32. Pan W. T., Liu Q. R., Bancroft C. Identification of a growth hormone gene promoter repressor element and its cognate double- and single-stranded DNA-binding proteins. J Biol Chem. 1990 Apr 25;265(12):7022–7028. [PubMed] [Google Scholar]
  33. Quinn P. G., Wong T. W., Magnuson M. A., Shabb J. B., Granner D. K. Identification of basal and cyclic AMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1988 Aug;8(8):3467–3475. doi: 10.1128/mcb.8.8.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richards A. H., Hilf R. Influence of pregnancy, lactation and involution on glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the rat mammary gland. Endocrinology. 1972 Jul;91(1):287–295. doi: 10.1210/endo-91-1-287. [DOI] [PubMed] [Google Scholar]
  35. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  36. Short M. L., Manohar C. F., Furtado M. R., Ghadge G. D., Wolinsky S. M., Thimmapaya B., Jungmann R. A. Nucleotide and derived amino-acid sequences of the CRE-binding proteins from rat C6 glioma and HeLa cells. Nucleic Acids Res. 1991 Aug 11;19(15):4290–4290. doi: 10.1093/nar/19.15.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Short S., Short M. L., Milkowski D. M., Jungmann R. A. Functional analysis of cis- and trans-regulatory elements of the lactate dehydrogenase A subunit promoter by in vitro transcription. J Biol Chem. 1991 Nov 25;266(33):22164–22172. [PubMed] [Google Scholar]
  38. SivaRaman L., Subramanian S., Thimmappaya B. Identification of a factor in HeLa cells specific for an upstream transcriptional control sequence of an EIA-inducible adenovirus promoter and its relative abundance in infected and uninfected cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5914–5918. doi: 10.1073/pnas.83.16.5914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Uhler M. D., McKnight G. S. Expression of cDNAs for two isoforms of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1987 Nov 5;262(31):15202–15207. [PubMed] [Google Scholar]
  40. Wang J., Chen S. Identification of a promoter and a silencer at the 3'-end of the first intron of the human aromatase gene. Mol Endocrinol. 1992 Sep;6(9):1479–1488. doi: 10.1210/mend.6.9.1331779. [DOI] [PubMed] [Google Scholar]
  41. Williams K. R., Reddigari S., Patel G. L. Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5260–5264. doi: 10.1073/pnas.82.16.5260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Z. X., Kumar V., Rivera R. T., Chisholm J., Biswas D. K. cis-acting negative regulatory element of prolactin gene. J Biol Chem. 1990 Mar 25;265(9):4785–4788. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES